Skip to main content
Log in

A silicon-impregnated carbon nanotube mat as a lithium-ion cell anode

  • Short Communication
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Silicon is a widely researched material for the anodes of lithium-ion batteries due to its high practical charge capacity of 3600 mAh g−1, which is ~ 10 times the specific capacity of conventional graphitic materials. However, silicon degrades rapidly in use due to its volumetric changes during charge/discharge of the battery, which makes it necessary to use complicated or costly methods to ameliorate capacity loss. Here, we report a novel silicon anode fabrication technique, which involves winding an aligned carbon nanotube (CNT) sheet and commensurately infiltrating it in situ with an aqueous solution containing silicon nanoparticles and hydroxypropyl guar binder. The resulting infiltrated felts were processed, evaluated, and compared to conventional silicon–carbon black anodes with the same carbon, silicon, and binder content as a proof of concept study. The felts had a large initial reversible capacity and promising rate capability. It is likely that the conductive CNT structure improved the charge transfer properties while lessening the effects of silicon volumetric expansion during lithiation. The results demonstrate that this novel anode fabrication method is viable and may be explored for further optimization.

Graphical Abstract

A novel fabrication method is described for the negative electrode for a lithium-ion battery: a CNT mat is formed by a drawing operation from a CNT vertical array while simultaneously being impregnated with a solution containing silicon nanoparticles and hydroxypropyl guar gum binder. The resulting CNT–Si anode structure shows improved lifetime cycling performance compared to traditional slurry-based silicon anodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Hatchard TD, Dahn JR (2004) In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. J Electrochem Soc 151:A838–A842

    Article  CAS  Google Scholar 

  2. Obrovac MN, Christensen L (2004) Structural changes in silicon anodes during lithium insertion/extraction. Electrochem Solid State Lett 7:A93–A96

    Article  CAS  Google Scholar 

  3. Chan CK, Ruffo R, Hong SS, Huggins RA, Cui Y (2009) Structural and electrochemical study of the reaction of lithium with silicon nanowires. J Power Sources 189:34–39

    Article  CAS  Google Scholar 

  4. Cui L-F, Ruffo R, Chan CK, Peng H, Cui Y (2009) Crystalline-amorphous core – shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett 9:491–495

    Article  CAS  Google Scholar 

  5. Chan CK, McIlwrath K, Huggins RA (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3:31–35

    Article  CAS  Google Scholar 

  6. Zamfir MR, Nguyen HT, Moyen E, Lee YH, Pribat D (2013) Silicon nanowires for Li-based battery anodes: a review. J Mater Chem A 1:9566–9586

    Article  CAS  Google Scholar 

  7. Green M, Fielder E, Scrosati B, Wachtler M, Moreno JS (2003) Structured silicon anodes for lithium battery applications. Electrochem Solid State Lett 6:A75

    Article  CAS  Google Scholar 

  8. Ge M, Rong J, Fang X, Zhou C (2012) Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Lett 12:2318–2323

    Article  CAS  Google Scholar 

  9. Li X et al (2014) Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes. Nat Commun 5:1–7

    Google Scholar 

  10. Park J-B, Lee K-H, Jeon Y-J, Lim S-H, Lee S-M (2014) Si/C composite lithium-ion battery anodes synthesized using silicon nanoparticles from porous silicon. Electrochim Acta 133:73–81

    Article  CAS  Google Scholar 

  11. Yu W et al (2015) Lithiation of silicon nanoparticles confined in carbon nanotubes. ACS Nano 9:5063–5071

    Article  CAS  Google Scholar 

  12. Probst N, Grivei E (2002) Structure and electrical properties of carbon black. Carbon N Y 40:201–205

    Article  CAS  Google Scholar 

  13. Zhang L et al (2015) Strong and conductive dry carbon nanotube films by microcombing. Small 11:3830–3836

    Article  CAS  Google Scholar 

  14. Li Q et al (2007) Structure-dependent electrical properties of carbon nanotube fibers. Adv Mater 19:3358–3363

    Article  CAS  Google Scholar 

  15. Zhou Z et al (2014) Mechanical and electrical properties of aligned carbon nanotube/carbon matrix composites. Carbon N Y 75:307–313

    Article  CAS  Google Scholar 

  16. Stano KL et al (2016) Ultralight interconnected metal oxide nanotube networks Small 12:2432–2438

    Article  CAS  Google Scholar 

  17. Yildiz O, Bradford PD (2013) Aligned carbon nanotube sheet high efficiency particulate air filters. Carbon N Y 64:295–304

    Article  CAS  Google Scholar 

  18. Bradford PD et al (2010) A novel approach to fabricate high volume fraction nanocomposites with long aligned carbon nanotubes. Compos Sci Technol 70:1980–1985

    Article  CAS  Google Scholar 

  19. Zhang X et al (2007) Strong carbon-nanotube fibers spun from long carbon-nanotube arrays. Small 3:244–248

    Article  CAS  Google Scholar 

  20. Wang X et al (2011) Mechanical and electrical property improvement in CNT/Nylon composites through drawing and stretching. Compos Sci Technol 71:1677–1683

    Article  CAS  Google Scholar 

  21. Wang X et al (2012) Ultrastrong, stiff and multifunctional carbon nanotube composites. Mater Res Lett 1:1–7

    Google Scholar 

  22. Fu K et al (2013) Aligned carbon nanotube-silicon sheets: a novel nano-architecture for flexible lithium ion battery electrodes. Adv Mater 25:5109–5114

    Article  CAS  Google Scholar 

  23. Faraji S et al (2014) Structural annealing of carbon coated aligned multi-walled carbon nanotube sheets. Carbon N Y 79:113–122

    Article  CAS  Google Scholar 

  24. Dufficy MK, Khan SA, Fedkiw PS (2015) Galactomannan binding agents for silicon anodes in Li-ion batteries. J Mater Chem A 3:12023–12030

    Article  CAS  Google Scholar 

  25. Cuesta N, Ramos A, Cameán I, Antuña C, García AB (2015) Hydrocolloids as binders for graphite anodes of lithium-ion batteries. Electrochim Acta 155:140–147

    Article  CAS  Google Scholar 

  26. Liu J et al (2015) A robust ion-conductive biopolymer as a binder for si anodes of lithium-ion batteries. Adv Funct Mater 25:3599–3605

    Article  CAS  Google Scholar 

  27. Sudhakar YN, Selvakumar M, Bhat DK (2014) Tubular array, dielectric, conductivity and electrochemical properties of biodegradable gel polymer electrolyte. Mater Sci Eng B 180:12–19

    Article  CAS  Google Scholar 

  28. Yildiz O et al (2015) High performance carbon nanotube–polymer nanofiber hybrid fabrics. Nanoscale 7:16744–16754

    Article  CAS  Google Scholar 

  29. Ho D (2016) A silicon-impregnated carbon nanotube mat as a lithium-ion cell anode. North Carolina State University, Raleigh

    Google Scholar 

  30. Liu W et al (2011) Producing superior composites by winding carbon nanotubes onto a mandrel under a poly(vinyl alcohol) spray. Carbon N Y 49:4786–4791

    Article  CAS  Google Scholar 

  31. Choi NS et al (2006) Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode. J Power Sources 161:1254–1259

    Article  CAS  Google Scholar 

  32. Xu C et al (2015) Improved performance of the silicon anode for li-ion batteries: understanding the surface modification mechanism of fluoroethylene carbonate as an effective electrolyte additive. Chem Mater 27:2591–2599

    Article  CAS  Google Scholar 

  33. Klett M, Gilbert JA, Pupek KZ, Trask SE, Abraham DP (2017) Layered oxide, graphite and silicon-graphite electrodes for lithium-ion cells: effect of electrolyte composition and cycling windows. J Electrochem Soc 164:A6095–A6102

    Article  CAS  Google Scholar 

  34. Obrovac MN, Krause LJ (2007) Reversible cycling of crystalline silicon powder. J Electrochem Soc 154:A103

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thank you to Marty Dufficy and Anna Rehder for their time and efforts on this project. This research did not receive any specific Grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David N. Ho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ho, D.N., Yildiz, O., Bradford, P. et al. A silicon-impregnated carbon nanotube mat as a lithium-ion cell anode. J Appl Electrochem 48, 127–133 (2018). https://doi.org/10.1007/s10800-017-1140-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-017-1140-8

Keywords

Navigation