Journal of Applied Electrochemistry

, Volume 48, Issue 1, pp 37–48 | Cite as

Functionalized seaweed-derived graphene/polyaniline nanocomposite as efficient energy storage electrode

  • Rajeev Gupta
  • Nilesh Vadodariya
  • Ashesh Mahto
  • Jai Prakash Chaudhary
  • Dilip B. Parmar
  • Divesh N. Srivastava
  • Sanna Kotrappanavar Nataraj
  • Ramavatar Meena
Research Article


The present study demonstrates a synergistic effect of combining graphene, sourced from seaweed (Ulva fasciata) with polyaniline for energy storage applications via a simple aqueous synthetic route. In situ polymerization of aniline monomer resulted in unique polyaniline nanofiber-coated seaweed-derived graphene nanocomposites (PANI:SDG). Easily scalable synthetic route produced nanocomposites with improved electrical conductivity (> 75 mScm−1) and thermal stability. Results of electrochemical studies on PANI–SDG nanocomposites as electrode material showed improved specific capacitance (> 400 F g−1) with enhanced cyclic stability (1000 cycles). The unique cooperative effect between the PANI and SDG resulted in significantly improved charge storage properties in comparison to controlled PANI and graphene electrodes. The supercapacitor device prepared in this work exhibited high specific capacitance and cyclic stability and could be utilized for potential applications in a variety of devices and wearable electronics.

Graphical Abstract


Seaweed biomass Seaweed-derived graphene PANI Nanocomposites Supercapacitor 



CSIR-CSMCRI Registration Number-147/2016. RG is thankful to University Grant Commission (UGC) for providing Senior Research Fellowship. JP& NV are thankful to DST and CSIR for providing Fellowship. SKN gratefully acknowledges the DST, Government of India for DST-INSPIRE Fellowship and Research Grant (IFA12-CH-84). RM & JPC gratefully acknowledge SERB-DST, New Delhi, Government of India for financial support (SB/EMEQ-052/2013 & EMR/2016/004944).


  1. 1.
    Turner C (2015) Review of chemistry of sustainable energy. J Chem Educ 92(4):601–602. doi: 10.1021/ed5008298 CrossRefGoogle Scholar
  2. 2.
    Nishino A (1996) Capacitors: operating principles, current market and technical trends. J Power Sources 60(2):137–147. doi: 10.1016/S0378-7753(96)80003-6 CrossRefGoogle Scholar
  3. 3.
    Boyea J, Camacho R, Sturano S, Ready W (2007) Carbon nanotube-based supercapacitors: technologies and markets. Nanotechnol Law Bus 4:19Google Scholar
  4. 4.
    González A, Goikolea E, Barrena JA, Mysyk R (2016) Review on supercapacitors: technologies and materials. Renew Sustain Energy Rev 58:1189–1206. doi: 10.1016/j.rser.2015.12.249 CrossRefGoogle Scholar
  5. 5.
    Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41(2):797–828. doi: 10.1039/C1CS15060J CrossRefGoogle Scholar
  6. 6.
    Borenstein A, Hanna O, Attias R, Luski S, Brousse T, Aurbach D (2017) Carbon-based composite materials for supercapacitor electrodes: a review. J Mater Chem A. doi: 10.1039/C7TA00863E Google Scholar
  7. 7.
    Cherusseri J, Kar KK (2015) Hierarchically mesoporous carbon nanopetal based electrodes for flexible supercapacitors with super-long cyclic stability. J Mater Chem A 3(43):21586–21598. doi: 10.1039/C5TA05603A CrossRefGoogle Scholar
  8. 8.
    Dyatkin B, Presser V, Heon M, Lukatskaya MR, Beidaghi M, Gogotsi Y (2013) Development of a green supercapacitor composed entirely of environmentally friendly materials. ChemSusChem 6(12):2269–2280. doi: 10.1002/cssc.201300852 CrossRefGoogle Scholar
  9. 9.
    Ramadoss A, Saravanakumar B, Lee SW, Kim Y-S, Kim SJ, Wang ZL (2015) Piezoelectric-driven self-charging supercapacitor power cell. ACS Nano 9(4):4337–4345. doi: 10.1021/acsnano.5b00759 CrossRefGoogle Scholar
  10. 10.
    Wei W, Mi L, Cui S, Wang B, Chen W (2015) Carambola-like Ni@Ni1.5Co1.5S2 for use in high-performance supercapacitor devices design. ACS Sustain Chem Eng 3(11):2777–2785. doi: 10.1021/acssuschemeng.5b00651 CrossRefGoogle Scholar
  11. 11.
    Xie Q, Bao R, Zheng A, Zhang Y, Wu S, Xie C, Zhao P (2016) Sustainable low-cost green electrodes with high volumetric capacitance for aqueous symmetric supercapacitors with high energy density. ACS Sustain Chem Eng 4(3):1422–1430. doi: 10.1021/acssuschemeng.5b01417 CrossRefGoogle Scholar
  12. 12.
    Zheng Q, Cai Z, Ma Z, Gong S (2015) Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors. ACS Appl Mater Interfaces 7(5):3263–3271. doi: 10.1021/am507999s CrossRefGoogle Scholar
  13. 13.
    Zheng Y, Yang Y, Chen S, Yuan Q (2016) Smart, stretchable and wearable supercapacitors: prospects and challenges. CrystEngComm 18(23):4218–4235. doi: 10.1039/C5CE02510A CrossRefGoogle Scholar
  14. 14.
    Lei Y, Li J, Wang Y, Gu L, Chang Y, Yuan H, Xiao D (2014) Rapid microwave-assisted green synthesis of 3D hierarchical flower-shaped NiCo2O4 microsphere for high-performance supercapacitor. ACS Appl Mater Interfaces 6(3):1773–1780. doi: 10.1021/am404765y CrossRefGoogle Scholar
  15. 15.
    Fu C, Grant PS (2015) Toward low-cost grid scale energy storage: supercapacitors based on up-cycled industrial mill scale waste. ACS Sustain Chem Eng 3(11):2831–2838. doi: 10.1021/acssuschemeng.5b00757 CrossRefGoogle Scholar
  16. 16.
    Quintero R, Kim DY, Hasegawa K, Yamada Y, Yamada A, Noda S (2014) Carbon nanotube 3D current collectors for lightweight, high performance and low cost supercapacitor electrodes. RSC Adv 4(16):8230–8237. doi: 10.1039/C3RA47517D CrossRefGoogle Scholar
  17. 17.
    Yang P, Ding Y, Lin Z, Chen Z, Li Y, Qiang P, Ebrahimi M, Mai W, Wong CP, Wang ZL (2014) Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Lett 14(2):731–736. doi: 10.1021/nl404008e CrossRefGoogle Scholar
  18. 18.
    Poizot P, Dolhem F (2011) Clean energy new deal for a sustainable world: from non-CO2 generating energy sources to greener electrochemical storage devices. Energy Environ Sci 4(6):2003–2019. doi: 10.1039/C0EE00731E CrossRefGoogle Scholar
  19. 19.
    Titirici M-M, White RJ, Brun N, Budarin VL, Su DS, del Monte F, Clark JH, MacLachlan MJ (2015) Sustainable carbon materials. Chem Soc Rev 44(1):250–290. doi: 10.1039/C4CS00232F CrossRefGoogle Scholar
  20. 20.
    Yan Z-F, Hao Z-P, Lu MGQ (2010) Perspective on sustainable energy technologies in Asia and Pacific states. Energy Fuels 24(7):3713–3714. doi: 10.1021/ef100411b CrossRefGoogle Scholar
  21. 21.
    Bichat MP, Raymundo-Piñero E, Béguin F (2010) High voltage supercapacitor built with seaweed carbons in neutral aqueous electrolyte. Carbon 48(15):4351–4361. doi: 10.1016/j.carbon.2010.07.049 CrossRefGoogle Scholar
  22. 22.
    Raymundo-Piñero E, Cadek M, Béguin F (2009) Tuning carbon materials for supercapacitors by direct pyrolysis of seaweeds. Adv Func Mater 19(7):1032–1039. doi: 10.1002/adfm.200801057 CrossRefGoogle Scholar
  23. 23.
    Song MY, Park HY, Yang D-S, Bhattacharjya D, Yu J-S (2014) Seaweed-derived heteroatom-doped highly porous carbon as an electrocatalyst for the oxygen reduction reaction. ChemSusChem 7(6):1755–1763. doi: 10.1002/cssc.201400049 CrossRefGoogle Scholar
  24. 24.
    Liu L, Yang X, Lv C, Zhu A, Zhu X, Guo S, Chen C, Yang D (2016) Seaweed-derived route to Fe2O3 hollow nanoparticles/N-doped graphene aerogels with high lithium ion storage performance. ACS Appl Mater Interfaces 8(11):7047–7053. doi: 10.1021/acsami.5b12427 CrossRefGoogle Scholar
  25. 25.
    Raymundo-Piñero E, Cadek M, Wachtler M, Béguin F (2011) Carbon nanotubes as nanotexturing agents for high power supercapacitors based on seaweed carbons. ChemSusChem 4(7):943–949. doi: 10.1002/cssc.201000376 CrossRefGoogle Scholar
  26. 26.
    Han C, Andersen J, Pillai SC, Fagan R, Falaras P, Byrne JA, Dunlop PSM, Choi H, Jiang W, O’Shea K, Dionysiou DD (2013) Chapter green nanotechnology: development of nanomaterials for environmental and energy applications. Sustainable nanotechnology and the environment: advances and achievements, ACS symposium series, vol 1124. American Chemical Society, Washington, pp 201–229Google Scholar
  27. 27.
    Cheng Q, Tang J, Shinya N, Qin L-C (2013) Polyaniline modified graphene and carbon nanotube composite electrode for asymmetric supercapacitors of high energy density. J Power Sources 241:423–428. doi: 10.1016/j.jpowsour.2013.04.105 CrossRefGoogle Scholar
  28. 28.
    Liu M, Miao Y-E, Zhang C, Tjiu WW, Yang Z, Peng H, Liu T (2013) Hierarchical composites of polyaniline-graphene nanoribbons-carbon nanotubes as electrode materials in all-solid-state supercapacitors. Nanoscale 5(16):7312–7320. doi: 10.1039/C3NR01442H CrossRefGoogle Scholar
  29. 29.
    Sarac AS, Ates M, Kilic B (2008) Electrochemical impedance spectroscopic study of polyaniline on platinum, glassy carbon and carbon fiber microelectrodes. Int J Electrochem Sci 3(7):777–786Google Scholar
  30. 30.
    Xiao F, Yang S, Zhang Z, Liu H, Xiao J, Wan L, Luo J, Wang S, Liu Y (2015) Scalable synthesis of freestanding sandwich-structured graphene/polyaniline/graphene nanocomposite paper for flexible all-solid-state supercapacitor. Sci Rep 5:9359. doi: 10.1038/srep09359.
  31. 31.
    Eftekhari A (2011) Nanostructured conductive polymers. Wiley, HobokenGoogle Scholar
  32. 32.
    Zhang K, Zhang LL, Zhao XS, Wu J (2010) Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem Mater 22(4):1392–1401. doi: 10.1021/cm902876u CrossRefGoogle Scholar
  33. 33.
    Yan J, Wei T, Shao B, Fan Z, Qian W, Zhang M, Wei F (2010) Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon 48(2):487–493. doi: 10.1016/j.carbon.2009.09.066 CrossRefGoogle Scholar
  34. 34.
    Xu J, Wang K, Zu S-Z, Han B-H, Wei Z (2010) Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano 4(9):5019–5026. doi: 10.1021/nn1006539 CrossRefGoogle Scholar
  35. 35.
    Zhang J, Zhao XS (2012) Conducting polymers directly coated on reduced graphene oxide sheets as high-performance supercapacitor electrodes. J Phys Chem C 116(9):5420–5426. doi: 10.1021/jp211474e CrossRefGoogle Scholar
  36. 36.
    Wang L, Ye Y, Lu X, Wen Z, Hou H, Song Y, Li Z (2013) Hierarchical nanocomposites of polyaniline nanowire arrays on reduced graphene oxide sheets for supercapacitors. Sci Rep 3:3568CrossRefGoogle Scholar
  37. 37.
    Liu D, Yu S, Shen Y, Chen H, Shen Z, Zhao S, Fu S, Yu Y, Bao B (2015) Polyaniline coated boron doped biomass derived porous carbon composites for supercapacitor electrode materials. Ind Eng Chem Res 54(50):12570–12579. doi: 10.1021/acs.iecr.5b02507 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Rajeev Gupta
    • 1
    • 3
  • Nilesh Vadodariya
    • 2
    • 3
  • Ashesh Mahto
    • 3
    • 4
  • Jai Prakash Chaudhary
    • 2
    • 3
  • Dilip B. Parmar
    • 1
    • 3
  • Divesh N. Srivastava
    • 1
    • 3
  • Sanna Kotrappanavar Nataraj
    • 4
  • Ramavatar Meena
    • 2
    • 3
  1. 1.Analytical Division & CIFCSIR-Central Salt & Marine Chemicals Research InstituteBhavnagarIndia
  2. 2.Natural Products and Green ChemistryCSIR-Central Salt & Marine Chemicals Research InstituteBhavnagarIndia
  3. 3.AcSIR-Centr al Salt & Marine Chemicals Research InstituteBhavnagarIndia
  4. 4.Centre for Nano and Material SciencesJain UniversityBangaloreIndia

Personalised recommendations