Journal of Applied Electrochemistry

, Volume 47, Issue 11, pp 1189–1201 | Cite as

Improvement in the electrochemical performance of a LiNi0.5Mn0.5O2 cathode material at high voltage

  • Faqiang Li
  • Guowei Yang
  • Guofeng Jia
  • Xuehui Shangguan
  • Qin Zhuge
  • Bin Bai
Research Article
Part of the following topical collections:
  1. Batteries


Layered LiNi0.5−x Ca x Mn0.5O2 (0 ≤ x ≤ 0.2) cathode materials were prepared through a combination of co-precipitation and a solid-state method. The prepared cathode materials were investigated in detail by X-ray diffraction (XRD), Rietveld refinement, inductively coupled plasma, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), cyclic voltammetry and charge–discharge measurements. The results of XRD, Rietveld refinement, XPS and SEM measurements revealed that Ca-doping can increase the stability of the structure and lower the amount of Li/Ni cation mixing. Furthermore, Ca-doping was not observed to affect the morphology or oxidation states of the LiNi0.5Mn0.5O2. The electrochemical measurements showed that the pristine LiNi0.5Mn0.5O2 material has the lowest discharge capacity of 88.6 mAh g−1 between 3 and 4.5 V at a constant density of 0.2 C, which was improved 38% by doping with 3 mol% of Ca. Additionally, the capacity retention of the 3 mol% Ca-doping is 20% higher than that of the pristine LiNi0.5Mn0.5O2 material in the voltage range of 3.0–4.5 V. Furthermore, we investigated the source of the enhancement of the electrochemical properties from Ca-doping. The improvement may be attributed to increased structural stability, lowered Li/Ni cation mixing, decreased polarization, reduced migration resistance and faster lithium-ion diffusion.

Graphical Abstract


Ca-doping LiNi0.5Mn0.5O2 cathode material Lithium-ion batteries Co-precipitation and solid-state method 



This work was supported by the Natural Science Foundation of China (U1507106 and U1507114), the Natural Science Foundation of Qinghai Province (2015-ZJ-935Q) and the Key Plan Research and Transformation of Qinghai Province (2016-GX-101).


  1. 1.
    Niknia F, Jamali-Sheini F, Yousefi R (2016) Examining the effect of Zn dopant on physical properties of nanostructured SnS thin film by using electrodeposition. J Appl Electrochem 46(3):323–330. doi: 10.1007/s10800-015-0913-1 CrossRefGoogle Scholar
  2. 2.
    Huang Z, Wang Z, Guo H, Li X (2016) Influence of Mg2+ doping on the structure and electrochemical performances of layered LiNi0.6Co0.2−xMn0.2MgxO2 cathode materials. J Alloys Compd 671:479–485. doi: 10.1016/j.jallcom.2016.02.119 CrossRefGoogle Scholar
  3. 3.
    Yoon S (2016) Effect of nitridation on LiMn1.5Ni0.5O4 and its application as cathode material in lithium-ion batteries. J Appl Electrochem 46(4):479–485. doi: 10.1007/s10800-016-0919-3 CrossRefGoogle Scholar
  4. 4.
    Wang M, Chen YB, Luo M, Chen L (2016) Nanosized 0.3Li2MnO3·0.7LiNi1/3Mn1/3Co1/3O2 synthesized by CNTs-assisted hydrothermal method as cathode material for lithium ion battery. J Appl Electrochem 46(9):907–915. doi: 10.1007/s10800-016-0964-y CrossRefGoogle Scholar
  5. 5.
    Diaz-Carrasco P, Ferreira PCM, Dolotko O, Perez-Flores JC, Amador U, Kuhn A, Garcia-Alvarado F (2016) The effect of ceramic synthesis conditions on the electrochemical properties of Li2Ti3O7. J Mater Sci 51(9):4520–4529. doi: 10.1007/s10853-016-9764-3 CrossRefGoogle Scholar
  6. 6.
    Svoukis E, Mihailescu CN, Mai VH, Schneegans O, Breza K, Lioutas C, Giapintzakis J (2016) Data storage applications based on LiCoO2 thin films grown on Al2O3 and Si substrates. Appl Surf Sci 381:22–27. doi: 10.1016/j.apsusc.2016.02.177 CrossRefGoogle Scholar
  7. 7.
    Mantripragada VP, Lecka-Czernik B, Ebraheim NA, Jayasuriya AC (2013) An overview of recent advances in designing orthopedic and craniofacial implants. J Biomed Mater Res A 101(11):3349–3364. doi: 10.1002/jbm.a.34605 Google Scholar
  8. 8.
    Liu Y, Cao F, Chen B, Zhao X, Suib SL, Chan HLW, Yuan J (2012) High performance of LiNi0.5Mn0.5O2 positive electrode boosted by ordered three-dimensional nanostructures. J Power Sources 206:230–235. doi: 10.1016/j.jpowsour.2012.01.069 CrossRefGoogle Scholar
  9. 9.
    Na S-H, Kim H-S, Moon S-I (2004) A new synthetic route of LiNi0.5Mn0.5O2 as the cathode material of secondary lithium batteries. Electrochim Acta 50(2–3):449–452. doi: 10.1016/j.electacta.2004.03.058 CrossRefGoogle Scholar
  10. 10.
    Manikandan P, Ananth MV, Prem Kumar T, Raju M, Periasamy P, Manimaran K (2011) Solution combustion synthesis of layered LiNi0.5Mn0.5O2 and its characterization as cathode material for lithium-ion cells. J Power Sources 196(23):10148–10155. doi: 10.1016/j.jpowsour.2011.08.034 CrossRefGoogle Scholar
  11. 11.
    Sun Y, Ouyang C, Wang Z, Huang X, Chen L (2004) Effect of Co content on rate performance of LiMn0.5−xCo2xNi0.5−xO2 cathode materials for lithium-ion batteries. J Electrochem Soc 151(4):A504. doi: 10.1149/1.1647574 CrossRefGoogle Scholar
  12. 12.
    Labrini M, Saadoune I, Scheiba F, Almaggoussi A, Elhaskouri J, Amoros P, Ehrenberg H, Brotz J (2013) Magnetic and structural approach for understanding the electrochemical behavior of LiNi0.33Co0.33Mn0.33O2 positive electrode material. Electrochim Acta 111:567–574. doi: 10.1016/j.electacta.2013.08.051 CrossRefGoogle Scholar
  13. 13.
    Hinuma Y, Meng YS, Kang KS, Ceder G (2007) Phase transitions in the LiNi0.5Mn0.5O2 system with temperature. Chem Mater 19(7):1790–1800. doi: 10.1021/cm062903i CrossRefGoogle Scholar
  14. 14.
    Breger J, Meng YS, Hinuma Y, Kumar S, Kang K, Shao-Horn Y, Ceder G, Grey CP (2006) Effect of high voltage on the structure and electrochemistry of LiNi0.5Mn0.5O2: a joint experimental and theoretical study. Chem Mater 18(20):4768–4781. doi: 10.1021/cm060886r CrossRefGoogle Scholar
  15. 15.
    Meng YS, Ceder G, Grey CP, Yoon WS, Shao-Horn Y (2004) Understanding the crystal structure of layered LiNi0.5Mn0.5O2 by electron diffraction and powder diffraction simulation. Electrochem Solid ST 7(6):A155–A158. doi: 10.1149/1.1718211
  16. 16.
    Gopukumar S, Chung KY, Kim KB (2004) Novel synthesis of layered LiNi1/2Mn1/2O2 as cathode material for lithium rechargeable cells. Electrochim Acta 49(5):803–810. doi: 10.1016/j.electacta.2003.09.034 CrossRefGoogle Scholar
  17. 17.
    Yoon WS, Grey CP, Balasubramanian M, Yang XQ, McBreen J (2003) In situ X-ray absorption spectroscopic study on LiNi0.5Mn0.5O2 cathode material during electrochemical cycling. Chem Mater 15(16):3161–3169. doi: 10.1021/cm030220m CrossRefGoogle Scholar
  18. 18.
    Reed J, Ceder G (2002) Charge, potential, and phase stability of layered LiNi0.5Mn0.5O2. Electrochem Solid ST 5(7):A145–A148. doi: 10.1149/1.1480135
  19. 19.
    Liu FL, Zhang S, Deng C, Wu Q, Zhang M, Meng FL, Gao H, Sun YH (2012) Cobalt content optimization of layered 0.6Li[Li1/3Mn2/3]O2-0.4Li[Ni0.5−xMn0.5−xCo2x]O2 (0 ≤ x ≤ 0.5) cathode materials prepared by the carbonate coprecipitation. J Electrochem Soc 159(10):A1591–A1597. doi: 10.1149/2.012210jes CrossRefGoogle Scholar
  20. 20.
    Quinlan RA, Lu YC, Shao-Horn Y, Mansour AN (2013) XPS studies of surface chemistry changes of LiNi0.5Mn0.5O2 electrodes during high-voltage cycling. J Electrochem Soc 160(4):A669–A677. doi: 10.1149/2.069304jes CrossRefGoogle Scholar
  21. 21.
    Kitamura N, Ishida N, Idemoto Y (2016) Atomic-configuration analysis on LiNi0.5Mn0.5O2 by reverse Monte Carlo simulation. Electrochemistry 84(10):789–792. doi: 10.5796/electrochemistry.84.789
  22. 22.
    Wagemaker M, Mulder FM (2013) Properties and promises of nanosized insertion materials for li-ion batteries. Accounts Chem Res 46(5):1206–1215. doi: 10.1021/ar2001793 CrossRefGoogle Scholar
  23. 23.
    Hong SA, Lee SB, Joo OS, Kang JW, Cho BW, Lim JS (2016) Synthesis of lithium titanium oxide (Li4Ti5O12) with ultrathin carbon layer using supercritical fluids for anode materials in lithium batteries. J Mater Sci 51(13):6220–6234. doi: 10.1007/s10853-016-9920-9 CrossRefGoogle Scholar
  24. 24.
    Wang Y, Yang Z, Qian Y, Gu L, Zhou H (2015) New insights into improving rate performance of lithium-rich cathode material. Adv Mater 27(26):3915–3920. doi: 10.1002/adma.201500956 CrossRefGoogle Scholar
  25. 25.
    Chen M, Zhao E, Yan Q, Hu Z, Xiao X, Chen D (2016) The effect of crystal face of Fe2O3 on the electrochemical performance for lithium-ion batteries. Sci Rep 6:29381. doi: 10.1038/srep29381 CrossRefGoogle Scholar
  26. 26.
    Mao J, Ma MZ, Liu PP, Hu JH, Shao GS, Battaglia V, Dai KH, Liu G (2016) The effect of cobalt doping on the morphology and electrochemical performance of high-voltage spinel LiNi0.5Mn1.5O4 cathode material. Solid State Ionics 292:70–74. doi: 10.1016/j.ssi.2016.05.008 CrossRefGoogle Scholar
  27. 27.
    Lu M, Han ES, Zhu LZ, Chen S, Zhang GQ (2016) The effects of Ti4+-Fe3+ co-doping on Li Ni1/3Co1/3Mn1/3 O2. Solid State Ionics 298:9–14. doi: 10.1016/j.ssi.2016.10.014 CrossRefGoogle Scholar
  28. 28.
    Kou YJ, Han ES, Zhu LZ, Liu LL, Zhang ZA (2016) The effect of Ti doping on electrochemical properties of Li1.167Ni0.4Mn0.383Co0.05O2 for lithium-ion batteries. Solid State Ionics 296:154–157. doi: 10.1016/j.ssi.2016.09.020 CrossRefGoogle Scholar
  29. 29.
    Svegl F, Orel B, Grabec-Svegl I, Kaucic V (2000) Characterization of spinel Co3O4 and Li-doped Co3O4 thin film electrocatalysts prepared by the sol-gel route. Electrochim Acta 45(25–26):4359–4371CrossRefGoogle Scholar
  30. 30.
    Saadoune I, Delmas C (1996) LiNi1-yCoyO2 positive electrode materials: Relationships between the structure, physical properties and electrochemical behaviour. J Mater Chem 6(2):193–199. doi: 10.1039/jm9960600193 CrossRefGoogle Scholar
  31. 31.
    Myung S-T, Komaba S, Hirosaki N, Hosoya K, Kumagai N (2005) Improvement of structural integrity and battery performance of LiNi0.5Mn0.5O2 by Al and Ti doping. J Power Sources 146(1–2):645–649. doi: 10.1016/j.jpowsour.2005.03.083 CrossRefGoogle Scholar
  32. 32.
    Yang G, Zhao E, Chen M, Cheng Y, Xue L, Hu Z, Xiao X, Li F (2017) Mg doping improving the cycle stability of LiNi0.5Mn0.5O2 at high voltage. J Solid State Electr. doi: 10.1007/s10008-017-3666-4
  33. 33.
    Chen M, Zhao E, Chen D, Wu M, Han S, Huang Q, Yang L, Xiao X, Hu Z (2017) Decreasing Li/Ni disorder and improving the electrochemical performances of Ni-rich LiNi0.8Co0.1Mn0.1O2 by Ca doping. Inorg Chem 56(14):8355–8362. doi: 10.1021/acs.inorgchem.7b01035 CrossRefGoogle Scholar
  34. 34.
    Zhao E, Chen M, Chen D, Xiao X, Hu Z (2015) A Versatile coating strategy to highly improve the electrochemical properties of layered oxide LiMO2 (M = Ni0.5Mn0.5 and Ni1/3Mn1/3Co1/3). ACS Appl Mater Inter 7(49):27096–27105. doi: 10.1021/acsami.5b08777
  35. 35.
    Zhao EY, Liu XF, Hu ZB, Sun LM, Xiao XL (2015) Facile synthesis and enhanced electrochemical performances of Li2TiO3-coated lithium-rich layered Li1.13Ni0.30Mn0.57O2 cathode materials for lithium-ion batteries. J Power Sources 294:141–149. doi: 10.1016/j.jpowsour.2015.06.059 CrossRefGoogle Scholar
  36. 36.
    Li J, Wan L, Cao C (2016) A high-rate and long cycling life cathode for rechargeable lithium-ion batteries: hollow LiNi0.5Mn0.5O2 nano/micro hierarchical microspheres. Electrochim Acta 191:974–979. doi: 10.1016/j.electacta.2016.01.153 CrossRefGoogle Scholar
  37. 37.
    Deng Y-F, Zhao S-X, Xu Y-H, Nan C-W (2014) Effect of the morphology of Li–La–Zr–O solid electrolyte coating on the electrochemical performance of spinel LiMn1.95Ni0.05O3.98F0.02 cathode materials. J Mater Chem A 2(44):18889–18897. doi: 10.1039/c4ta03772c
  38. 38.
    Guo ST, Zhao SX, Bi K, Deng YF, Xiong K, Nan CW (2016) Research on electrochemical properties and fade mechanisms of Li-rich cathode materials at low-temperature. Electrochim Acta 222:1733–1740CrossRefGoogle Scholar
  39. 39.
    Saroha R, Gupta A, Panwar AK (2017) Electrochemical performances of Li-rich layered-layered Li2MnO3-LiMnO2 solid solutions as cathode material for lithium-ion batteries. J Alloys Compd 696:580–589. doi: 10.1016/j.jallcom.2016.11.199 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Faqiang Li
    • 1
    • 3
    • 4
  • Guowei Yang
    • 1
    • 2
    • 3
  • Guofeng Jia
    • 1
    • 3
  • Xuehui Shangguan
    • 1
    • 2
    • 3
  • Qin Zhuge
    • 1
    • 3
  • Bin Bai
    • 4
  1. 1.Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt LakesChinese Academy of SciencesXiningPeople’s Republic of China
  2. 2.University of Chinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.Key Laboratory of Salt Lake Resources Chemistry of Qinghai ProvinceXiningPeople’s Republic of China
  4. 4.Qinghai Research Center of Low-temperature Lithium-ion Battery Technology EngineeringQinghai Green Grass New Energy Technology Co. Ltd.XiningPeople’s Republic of China

Personalised recommendations