Journal of Applied Electrochemistry

, Volume 47, Issue 11, pp 1251–1260 | Cite as

Electroreduction and solubility of CO2 in methoxy- and nitrile-functionalized imidazolium (FAP) ionic liquids

  • Dwight Angelo Bruzon
  • Julius Kim Tiongson
  • Giovanni Tapang
  • Imee Su Martinez
Research Article
  • 174 Downloads
Part of the following topical collections:
  1. Electrochemical Processes

Abstract

Ionic liquids with cyano (–CN)- and methoxy (–OCH3)-functionalized imidazolium cations paired with a fluorine-containing common anion Tris(pentafluoroethyl)trifluorophosphate or [FAP] were evaluated as solvent and electrolyte in the electroreduction of carbon dioxide. The measured reduction potentials of CO2 in both ionic liquids were observed to occur at ca.−1.1 V versus Cc+/Cc internal reference standard, which are significantly lower when compared to that of the non-functionalized analog [pmim][FAP], with an observed reduction potential of ca. −1.6 V versus Cc+/Cc. This decrease in the potential required for CO2 reduction in the cation-functionalized [FAP] ionic liquids suggests that the presence of functional groups methoxy and cyano effectively decreased the free energy of formation of the radical anion CO2·−. Results using pressure drop measurement and IR spectroscopy verify the ability of the ILs to dissolve carbon dioxide. Such solvents may be used as carbon capture agents and organocatalysts in the reduction of carbon dioxide.

Graphical Abstract

Keywords

Chronoamperometry CO2 reduction Methoxy-functionalized ionic liquid Nitrile-functionalized ionic liquid Pressure drop method IR spectroscopy 

Notes

Acknowledgements

The financial assistance is gratefully acknowledged from the Natural Sciences Research Institute (CHE-13-2-01), and the project VISSER, funded by the Emerging Interdisciplinary Research Grant by the Office of the Vice President for Academic Affairs of the University of the Philippines (OVPAA-EIDR C2-B-02-612-07), and the Philippine Council for Industry, Energy, and Emerging Technology Research and Development of the Department of Science and Technology Republic of the Philippines. Gratitude is also extended to Dr. Allan Yago and Dr. Ricky Nellas of the Institute of Chemistry, University of the Philippines Diliman, for their valuable advices in relation to this work.

References

  1. 1.
    Idem R, Wilson M, Tontiwachwuthikul P, Chakma A, Veawab A, Aroonwilas A, Gelowitz D (2006) Pilot plant studies of the CO2 capture performance of aqueous MEA and mixed MEA/MDEA solvents at the University of Regina CO2 capture technology development plant and the Boundary Dam CO2 capture demonstration plant. Ind Eng Chem Res 45:2414–2420CrossRefGoogle Scholar
  2. 2.
    Rochelle GT (2009) Amine scrubbing for CO2 capture. Science 325:1652–1654CrossRefGoogle Scholar
  3. 3.
    Anderson S, Newell R (2004) Prospects for carbon capture and storage technologies. Ann Rev Environ Res 29:109–142CrossRefGoogle Scholar
  4. 4.
    Pires JCM, Martins FG, Alvim-Ferraz MCM, Simoes M (2011) Recent developments on carbon capture and storage: an overview. Chem Eng Res Des 89:1446–1460CrossRefGoogle Scholar
  5. 5.
    Merkel TC, Lin H, Wei X, Baker R (2010) Power plant post-combustion carbon dioxide capture: an opportunity for membranes. J Membr Sci 359:126–139CrossRefGoogle Scholar
  6. 6.
    Peterson AA, Abild-Pedersen F, Studt F, Rossmeisl J, Norskov JK (2010) How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ Sci 3:1311–1315CrossRefGoogle Scholar
  7. 7.
    Riduan SN, Zhang Y, Ying JY (2009) Conversion of carbon dioxide into methanol with silanes over N-heterocyclic carbene catalysts. Angew Chem Int Ed 48:3322–3325CrossRefGoogle Scholar
  8. 8.
    Barzagli F, Mani F, Peruzzini M (2011) From greenhouse gas to feedstock: formation of ammonium carbamate from CO2 and NH3 in organic solvents and its catalytic conversion into urea under mild conditions. Green Chem 13:1267–1274CrossRefGoogle Scholar
  9. 9.
    Barton EE, Rampulla DM, Bocarsly AB (2008) Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell. J Am Chem Soc 130:6342–6344CrossRefGoogle Scholar
  10. 10.
    Neatu S, Macia-Agullo JA, Concepcion P, Garcia H (2014) Gold-copper nanoalloys supported on TiO2 as photocatalysts for CO2 reduction by water. J Am Chem Soc 136:15969–15976CrossRefGoogle Scholar
  11. 11.
    Behar D, Dhanasekaran T, Neta P, Hosten CM, Ejeh D, Hambright P, Fujita E (1998) Cobalt porphyrin catalyzed reduction of CO2. Radiation chemical, photochemical, and electrochemical studies. J Phys Chem A 102:2870–2877CrossRefGoogle Scholar
  12. 12.
    Lin J, Pan Z, Wang X (2014) Photochemical reduction of CO2 by graphitic carbon nitride polymers. ACS Sustain Chem Eng 2:353–358CrossRefGoogle Scholar
  13. 13.
    Koppenol WH, Rush JD (1987) Reduction potential of the carbon dioxide/carbon dioxide radical anion: a comparison with other C1 radicals. J Phys Chem 91:4429–4430CrossRefGoogle Scholar
  14. 14.
    Hori Y (2008) Electrochemical CO2 reduction on metal electrodes. Mod Asp Electrochem 42:89–189CrossRefGoogle Scholar
  15. 15.
    Snuffin LL, Whaley LW, Yu L (2011) Catalytic electrochemical reduction of CO2 in ionic liquid EMIMBF3Cl. J Electrochem Soc 158:F155–F158CrossRefGoogle Scholar
  16. 16.
    Lin J, Ding Z, Hou Y, Wang X (2013) Ionic liquid co-catalyzed artificial photosynthesis of CO. Sci Rep 3:1056–1060CrossRefGoogle Scholar
  17. 17.
    Bonhote P, Dias AP, Papageorgiou N, Kalyanasundaram K, Gratzel M (1996) Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem 35:1168–1178CrossRefGoogle Scholar
  18. 18.
    Gan Q, Rooney D, Zou Y (2006) Supported ionic liquid membranes in nanopore structure for gas separation and transport studies. Desalination 199:535–537CrossRefGoogle Scholar
  19. 19.
    Hayyan M, Mjalli FS, Hashim MA, AlNashef IM, Mei TX (2013) Investigating the electrochemical windows of ionic liquids. J Ind Eng Chem 19:106–112CrossRefGoogle Scholar
  20. 20.
    Bara JE, Carlisle TK, Gabriel CJ, Camper D, Finotello A, Gin DL, Noble RD (2009) Guide to CO2 separations in imidazolium-based room-temperature ionic liquids. Ind Eng Chem Res 48:2739–2751CrossRefGoogle Scholar
  21. 21.
    Kumelan J, Kamps APS, Tuma D, Maurer G (2006) Solubility of CO2 in the ionic liquids [bmim][CH3SO4] and [bmim][PF6]. J Chem Eng Data 51:1802–1807CrossRefGoogle Scholar
  22. 22.
    Shiflett MB, Yokozeki A (2007) Solubility of CO2 in room temperature ionic liquid [hmim][Tf2N]. J Phys Chem B 111:2070–2074CrossRefGoogle Scholar
  23. 23.
    Bates ED, Mayton RD, Ntai I, Davis JH Jr (2002) CO2 capture by a task-specific ionic liquid. J Am Chem Soc 124:926–927CrossRefGoogle Scholar
  24. 24.
    Baltus RE, Culbertson BH, Dai S, Luo H, DePaoli DW (2004) Low-pressure solubility of carbon dioxide in room-temperature ionic liquids measured with a quartz cystal microbalance. J Phys Chem B 108:721–727CrossRefGoogle Scholar
  25. 25.
    Muldoon MJ, Aki SNVK, Anderson JL, Dixon JK, Brennecke JF (2007) Improving carbon dioxide solubility in ionic liquids. J Phys Chem B 111:9001–9009CrossRefGoogle Scholar
  26. 26.
    Sharma P, Choi SH, Park SD, Baek IH, Lee GS (2012) Selective chemical separation of carbon dioxide by ether functionalized imidazolium cation based ionic liquids. Chem Eng J 181–182:834–841CrossRefGoogle Scholar
  27. 27.
    Sharma P, Park SD, Baek IH, Park KT, Yoon YI, Jeong SK (2012) Effects of anions on absorption capacity of carbon dioxide in acid functionalized ionic liquids. Fuel Proc Tech 100:55–62CrossRefGoogle Scholar
  28. 28.
    Carlisle TK, Bara JE, Gabriel CJ, Noble RD, Gin DL (2008) Ind Eng Chem Res 47:7005–7012CrossRefGoogle Scholar
  29. 29.
    Rosen BA, Salehi-Khojin A, Thorson MR, Zhu W, Whipple DT, Kenis PJA (2011) Masel RI Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials. Science 334:643–644CrossRefGoogle Scholar
  30. 30.
    Barrosse-Antle LE, Compton RG (2009) Reduction of carbon dioxide in 1-butyl-3-methylimidazolium acetate. Chem Commun 3744–3746Google Scholar
  31. 31.
    Buzzeo MC, Klymenko OV, Wadhawan JD, Hardacre C, Seddon KR, Compton RG (2004) Kinetic analysis of the reaction between electrogenerated superoxide and carbon dioxide in the room temperature ionic liquids 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and hexyltriethylammonium bis(trifluoromethylsulfonyl)imide. J Phys Chem B 108:3947–3954CrossRefGoogle Scholar
  32. 32.
    Zhang X, Liu Z, Wang W (2008) Screening of ionic liquids to capture CO2 by COSMO-RS and experiments. AlChE J 54:2717–2728CrossRefGoogle Scholar
  33. 33.
    Rao SS, Gejji SP (2016) CO2 absorption using fluorine functionalized ionic liquids: interplay of hydrogen and σ-hole interactions. J Phys Chem A 120:1243–1260CrossRefGoogle Scholar
  34. 34.
    Aliaga C, Baldelli S (2006) Sum frequency generation spectroscopy and double-layer capacitance studies of the 1-butyl-3-methylimidazolium dicyanamide-platinum interface. J Phys Chem B 110:18481–18491CrossRefGoogle Scholar
  35. 35.
    Hultgren VM, Mariotti AWA, Bond AM, Wedd AG (2002) Reference potential calibration and voltammetry at macrodisk electrodes of metallocene derivatives in the ionic liquid [Bmim][PF6]. Anal Chem 74:3151–3156CrossRefGoogle Scholar
  36. 36.
    Sukardi SK, Zhang J, Burgar I, Horne MD, Hollenkamp AF, MacFarlane DR, Bond AM (2008) Prospects for a widely applicable reference potential scale in ionic liquids based on ideal reversible reduction of the cobaltocenium cation. Electrochem Commun 10:250–254CrossRefGoogle Scholar
  37. 37.
    Palgunadi J, Kang JE, Cheong M, Kim H, Lee H, Kim HS (2009) Fluorine-free imidazolium-based ionic liquids with a phosphorous-containing anion as potential CO2 absorbents. Bull Korean Chem Soc 30:1749–1754CrossRefGoogle Scholar
  38. 38.
    Kim YS, Choi WY, Jang JH, Yoo KP, Lee CS (2005) Solubility measurement and prediction of carbon dioxide in ionic liquids. Fluid Phase Equilibra 228:439–445CrossRefGoogle Scholar
  39. 39.
    Mousavi MPS, Dittmerr AJ, Wilson BE, Hu J, Stein A, Bühlmann P (2015) Unbiased quantification of the electrochemical stability limits of electrolytes and ionic liquids. J Electrochem Soc 162:A2250–A2258CrossRefGoogle Scholar
  40. 40.
    Kroon MC, Buijs W, Peters CJ, Witkamp GJ (2006) Decomposition of ionic liquids in electrochemical processing. Green Chem 8:241–245CrossRefGoogle Scholar
  41. 41.
    Xiao L, Johnson KE (2003) Electrochemistry of 1-butyl-3-methyl-1H-imidazolium tetrafluoroborate ionic liquid. J Electrochem Soc 150:E307–E311CrossRefGoogle Scholar
  42. 42.
    Noack K, Schulz PS, Paape N, Kiefer J, Wasserscheid P, Liepertz A (2010) The role of the C2 position in interionic interactions of imidazolium based ionic liquids: a vibrational and NMR spectroscopic study. Phys Chem Chem Phys 12:14153–14161CrossRefGoogle Scholar
  43. 43.
    O’Mahony AM, Silvester DS, Aldous L, Hardacre C, Compton RG (2008) Effect of water on the electrochemical window and potential limits of room-temperature ionic liquids. J Chem Eng Data 53:2884–2891CrossRefGoogle Scholar
  44. 44.
    Barrosse-Antle LE, Bond AM, Compton RG, O’Mahony AM, Rogers EI, Silvester DS (2010) Voltammetry in room temperature ionic liquids: comparisons and contrasts with conventional electrochemical solvents. Chem J 5:202–230Google Scholar
  45. 45.
    Endres F (2002) Ionic liquids: solvents for the electrodeposition of metals and semiconductors. ChemPhysChem 3:144–154CrossRefGoogle Scholar
  46. 46.
    El Abedin SZ, Moustafa EM, Hempelmann R, Natter H, Endres F (2006) Electrodeposition of nano- and microcrystalline aluminium in three different air and water stable ionic liquids. ChemPhysChem 7:1535–1543CrossRefGoogle Scholar
  47. 47.
    El Abedin SZ, Endres F (2006) Electrodeposition of metals and semiconductors in air- and water-stable ionic liquids. ChemPhysChem 7:58–61CrossRefGoogle Scholar
  48. 48.
    Zhang Q, Li Z, Zhang J, Zhang S, Zhu L, Yang J, Zhang X, Deng Y (2007) Physicochemical properties of nitrile-functionalized ionic liquids. J Phys Chem B 111:2864–2872CrossRefGoogle Scholar
  49. 49.
    Gifford PR, Palmisano JB (1987) A substituted imidazolium chloroaluminate molten salt processing an increased electrochemical window. J Electrochem Soc 134:610–614CrossRefGoogle Scholar
  50. 50.
    Gorodetsky B, Ramnial T, Branda NR, Clyburne JAC (2004) Electrochemical reduction of an imidazolium cation: a convenient preparation of imidazole-2-ylidenes and their observation in an ionic liquid. Chem Commun 17:1972–1973CrossRefGoogle Scholar
  51. 51.
    Feroci M, Chiarotto I, Forte G, Inesi A (2013) An electrochemical methodology for the cyclic CO2 catch and release: The role of the electrogenerated N-heterocyclic carbene in BMIM-BF4. J CO2 Util 2:29–34CrossRefGoogle Scholar
  52. 52.
    Bockris JOM, Wass JC (1989) Photoelectrocatalytic reduction of carbon dioxide. J Electrochem Soc 136:2521–2528CrossRefGoogle Scholar
  53. 53.
    Yokozeki A, Shiflett MB, Junk CP, Grieco LM, Foo T (2008) Physical and chemical absorptions of carbon dioxide in room-temperature ionic liquids. J Phys Chem B 112:16654–16663CrossRefGoogle Scholar
  54. 54.
    Hanc-Scherer FA, Montiel MA, Montiel V, Herrero E, Sanchez-Sanchez CM (2015) Surface structured platinum electrodes for the electrochemical reduction of carbon dioxide in imidazolium based ionic liquids. Phys Chem Chem Phys 17:23909–23916CrossRefGoogle Scholar
  55. 55.
    Sanchez-Sanchez CM, Exposito E, Batanero B, Montiel V, Barba F, Aldaz A (2004) Electrochemical reduction of the anion of 1-isoquinolinecarboxylic acid: an unexpected reaction of cathodic decarboxylation. Electrochem Commun 6:595–599CrossRefGoogle Scholar
  56. 56.
    Eisenhardt CG, Pasquini M, Pietraperzia G, Becucci M (2002) A study on the anisole–carbon dioxide van der Waals complex by high resolution electronic spectroscopy. Phys Chem Chem Phys 4:5590–5593CrossRefGoogle Scholar
  57. 57.
    Kanakubo M, Makino T, Taniguchi T, Nokami T, Itoh T (2016) CO2 solubility in ether functionalized ionic liquids on mole fraction and molarity scales. ACS Sustain Chem Eng 4:525–535CrossRefGoogle Scholar
  58. 58.
    Lin H, Freeman BD (2005) Materials selection guidelines for membranes that remove CO2 from gas mixtures. J Mol Struct 739:57–74CrossRefGoogle Scholar
  59. 59.
    Feroci M, Orsini M, Rossi L, Sotgiu G, Inesi A (2007) Electrochemically promoted C-N bond formation from amines and CO2 in ionic liquid [bmim][BF4]: synthesis of carbamates. J Org Chem 72:200–203CrossRefGoogle Scholar
  60. 60.
    Cheek GT, Roeper DF, Pearson W, O’Grady WE (2014) Electrochemical studies of imidazolium carboxylate adducts in a room-temperature ionic liquid. ECS Trans 64:161–169CrossRefGoogle Scholar
  61. 61.
    Tanner EEL, Batchelor-McAuley C, Compton RG (2016) Carbon dioxide reduction in room-temperature ionic liquids: the effect of the choice of electrode material, cation, and anion. J Phys Chem C 120:26442–26447CrossRefGoogle Scholar
  62. 62.
    Shoup D, Szabo A (1982) Chronoamperometric current at finite disk electrodes. J Electroanal Chem 140:237–245CrossRefGoogle Scholar
  63. 63.
    Ikeuchi H (2005) Accuracy of theoretical equations for diffusion currents at a disk electrode. J Electroanal Chem 577:55–58CrossRefGoogle Scholar
  64. 64.
    Ikeuchi H, Kanakubo M, Watanabe Y, Naito T, Sato GP (2004) Chronoamperometric determination of diffusion coefficients under microgravity conditions. Electroanal Chem 562:105–110CrossRefGoogle Scholar
  65. 65.
    Lim H-K, Kim H (2017) The mechanism of room-temperature ionic-liquid-based electrochemical CO2 reduction: a review. Molecules 22:536–551CrossRefGoogle Scholar
  66. 66.
    Jacquemin J, Husson P, Majer V, Gomes MF (2006) Low-pressure solubilities and thermodynamics of solvation of eight gases in 1-butyl-3-methylimidazolium hexafluorophosphate. Fluid Phase Equilibra 240:87–95CrossRefGoogle Scholar
  67. 67.
    Bara JE, Lessmann S, Gabriel CJ, Hatakeyama ES, Noble RD, Gin DL (2007) Synthesis and performance of polymerizable room-temperature ionic liquids as gas separation membranes. Ind Eng Chem Res 46:5397–5404CrossRefGoogle Scholar
  68. 68.
    Makino T, Kanakubo M, Masuda Y, Umecky T, Suzuki A (2014) CO2 absorption properties, densities, viscosities, and electrical conductivities of ethylimidazolium and 1-ethyl-3-methylimidazolium ionic liquids. Fluid Phase Equilibra 362:300–306CrossRefGoogle Scholar
  69. 69.
    Coblentz Society, Inc. Evaluated infrared reference spectra. In: Linstrom PJ, Mallard WG (eds) NIST Chemistry WebBook. NIST Standard Reference Database Number 69. National Institute of Standards and Technology, Gaithersburg MD 20899. http://webbook.nist.gov/cgi/cbook.cgi?ID=C124389&Type=IR-SPEC&Index=1#Refs. Accessed 21 Aug 2017

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Dwight Angelo Bruzon
    • 1
    • 2
  • Julius Kim Tiongson
    • 1
    • 3
  • Giovanni Tapang
    • 2
  • Imee Su Martinez
    • 1
    • 3
  1. 1.Institute of Chemistry, National Science ComplexUniversity of the Philippines DilimanQuezon CityPhilippines
  2. 2.National Institute of Physics, National Science ComplexUniversity of the Philippines DilimanQuezon CityPhilippines
  3. 3.Natural Sciences Research InstituteUniversity of the Philippines DilimanQuezon CityPhilippines

Personalised recommendations