Advertisement

Journal of Applied Electrochemistry

, Volume 47, Issue 11, pp 1239–1249 | Cite as

Application of a nanostructured, tri-layer TiO2 photoanode for efficiency enhancement in quasi-solid electrolyte-based dye-sensitized solar cells

  • M. A. K. L. Dissanayake
  • H. N. M. Sarangika
  • G. K. R. Senadeera
  • H. K. D. W. M. N. R. Divarathna
  • E. M. P. C. Ekanayake
Research Article
Part of the following topical collections:
  1. Solar Cells

Abstract

A nanostructured, tri-layer TiO2 photoanode consisting of a rice grain-shaped (RG), electrospun TiO2 nanofiber layer (NF) sandwiched between two TiO2 nanoparticle (NP) layers has been successfully used for the efficiency enhancement in quasi-solid-state electrolyte-based dye-sensitized solar cells (DSSCs). A polyethylene oxide-based quasi-solid-state or gel electrolyte with binary iodide salts with optimized composition was employed as the electrolyte. The solar cell parameters of this DSSC were compared with DSSCs fabricated using conventional NP TiO2 photoanode. While the DSSCs fabricated with conventional NP photoanode showed an average efficiency of 5.76% with J sc of 12.12 mA cm−2 and V oc of 718.7 mV, the DSSCs fabricated with three-layer composite TiO2 nanostructured photoanode (TiO2 NP/RG/NP) showed an enhanced efficiency of 6.90% with J sc of 16.93 mA cm−2 and V oc of 672.3 mV. This shows that the three-layered composite photoanode with “rice grain-shaped” nanostructure is much superior to single-layered TiO2 nanoparticle photoanode prepared by conventional method and evidently contributes to the efficiency enhancement by enhanced light harvesting by scattering. Post-treatment of the three-layer photoanode with TiCl4 further enhanced the efficiency up to an impressive 7.30% which is among the highest for a quasi-solid-state DSSC.

Graphical abstract

Keywords

TiO2 tri-layer photoanode Electrospun TiO2 nanofibers Quasi-solid-state electrolyte Dye solar cells Efficiency enhancement 

Notes

Acknowledgements

HNMS wishes to acknowledge the National Institute of Fundamental Studies (NIFS) for providing research facilities and Sabaragamuwa University of Sri Lanka for granting study leave to complete this project successfully.

References

  1. 1.
    O’ Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740CrossRefGoogle Scholar
  2. 2.
    Kouhnavard M, Ludin NA, Ghaffari BV, Ikeda S, Sopian K, Miyake M (2016) Hydrophilic carbon/TiO2 colloid composite: a potential counter electrode for dye-sensitized solar cells. J Appl Electrochem 46(2):259–266CrossRefGoogle Scholar
  3. 3.
    Ye M, Wen X, Wang M, Iocozzia J, Zhang N, Lin C, Lin Z (2015) Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes. Mater Today 18(3):155–162CrossRefGoogle Scholar
  4. 4.
    Song W, Gong Y, Tian J, Cao G, Zhao H, Sun C (2016) Novel photoanode for dye-sensitized solar cells with enhanced light-harvesting and electron-collection efficiency. ACS Appl Mater Interfaces 8(21):13418–13425CrossRefGoogle Scholar
  5. 5.
    Liu X, Fang J, Liu Y, Lin T (2016) Progress in nanostructured photoanodes for dye-sensitized solar cells. Front Mater Sci 10(3):225–237CrossRefGoogle Scholar
  6. 6.
    Fan K, Yu J, Ho W (2017) Improving photoanodes to obtain highly efficient dye-sensitized solar cells: a brief review. Mater Horiz 4:319–344CrossRefGoogle Scholar
  7. 7.
    Canever N, Hughson F, Macdonald TJ, Nann T (2017) Electrospinning of photocatalytic electrodes for dye-sensitized solar cells. J Vis Exp 124:e55309. doi: 10.3791/55309 Google Scholar
  8. 8.
    Grätzel M (2003) Dye-sensitized solar cells. J Photochem Photobiol C 4:145–153CrossRefGoogle Scholar
  9. 9.
    Senadeera GKR, Kobayashi S, Kitamura T, Wada YS, Yanagida S (2005) Versatile preparation method for mesoporous TiO2 electrodes suitable for solid-state dye sensitized photocells. Bull Mater Sci 28(6):635–641CrossRefGoogle Scholar
  10. 10.
    Lin Z, Wang J (2003) Polymer nanofibers assembled by electrospinning. Curr Opin Colloid Interface Sci 8:64–75CrossRefGoogle Scholar
  11. 11.
    Frenot A, Chronakis IS (2003) Polymer nanofibers assembled by electrospinning. Curr Opin Colloid Interface Sci 8:64–75CrossRefGoogle Scholar
  12. 12.
    Shengyuan Y, Peining Z, Nair AS, Ramakrishna S (2011) Rice grain-shaped TiO2 mesostructures-synthesis, characterization and applications in dye-sensitized solar cells and photocatalysis. J Mater Chem 21:6541–6548CrossRefGoogle Scholar
  13. 13.
    Wang Q, Qiao J, Jin R, Xu X, Shanmin Gao S (2015) Fabrication of plasmonic AgBr/Ag nanoparticles-sensitized TiO2 nanotube arrays and their enhanced photo-conversion and photoelectrocatalytic properties. J Power Sources 277:480–485CrossRefGoogle Scholar
  14. 14.
    Li J, Chen X, Ai N, Hao J, Chen Q, Strauf S, Shi Y (2011) Silver nanoparticle doped TiO2 nanofiber dye sensitized solar cells. Chem Phys Lett 514:141–145CrossRefGoogle Scholar
  15. 15.
    Yang L, Leung WWF (2011) Application of a bilayer TiO2 nanofiber photoanode for optimization of dye-sensitized solar cells. Adv Mater 23:4559–4562CrossRefGoogle Scholar
  16. 16.
    Joshi P, Zhang L, Davoux D, Zhu Z, Galipeau D, Fong H, Qiao Q (2010) Composite of TiO2 nanofibers and nanoparticles for dye-sensitized solar cells with significantly improved efficiency. Energy Environ Sci 3:1507–1510CrossRefGoogle Scholar
  17. 17.
    Jung WH, Kwak NS, Hwang TS, Yi KB (2012) Preparation of highly porous TiO2 nanofibers for dye-sensitized solar cells (DSSCs) by electro-spinning. Appl Surf Sci 261:343–352CrossRefGoogle Scholar
  18. 18.
    Nair AS, Shengyuan Y, Peining Z, Ramakrishna S (2010) Rice grain-shaped TiO2 mesostructures by electrospinning for dye-sensitized solar cells. Chem Commun 46:7421–7423CrossRefGoogle Scholar
  19. 19.
    Zhu P, Nair AS, Yang S, Peng S, Ramakrishna S (2011) Which is a superior material for scattering layer in dye-sensitized solar cells—electrospun rice grain-or nanofiber-shaped TiO2? J Mater Chem 21:12210–12212CrossRefGoogle Scholar
  20. 20.
    Nair AS, Zhu P, Babu VJ, Yang S, Krishnamoorthy T, Murugan R, Peng S, Ramakrishna S (2012) TiO2 derived by titanate route from electrospun nanostructures for high-performance dye-sensitized solar cells. Langmuir 28:6202–6206CrossRefGoogle Scholar
  21. 21.
    Dissanayake MAKL, Divarathna HKDWMN, Dissanayake CB, Senadeera GKR, Ekanayake PMPC, Thotawattage CA (2016) An innovative TiO2 nanoparticle/nanofiber/nanoparticle, three layer composite photoanode for efficiency enhancement in dye-sensitized solar cells. J Photochem Photobiol A 322–323:110–118CrossRefGoogle Scholar
  22. 22.
    Dissanayake MAKL, Thotawatthage CA, Senadeera GKR, Bandara TMWJ, Jayasundera WJMJSR, Mellander B-E (2012) Efficiency enhancement by mixed cation effect in dye-sensitized solar cells with PAN based gel polymer electrolyte. J Photochem Photobiol A 246:29–35CrossRefGoogle Scholar
  23. 23.
    Dissanayake MAKL, Divarathne HKDWMNR, Thotawatthage CA, Dissanayake CB, Senadeera GKR, Bandara BMR (2014) Dye-sensitized solar cells based on electrospun polyacrylonitrile (PAN) nanofiber membrane gel electrolyte. Electrochim Acta 130:76–81CrossRefGoogle Scholar
  24. 24.
    Hore S, Nitz P, Vetter C, Prahl C, Niggemann M, Kern R (2005) Scattering spherical voids in nanocrystalline TiO2- enhancement of efficiency in dye-sensitized solar cells. Chem Commun 15:2011–2013CrossRefGoogle Scholar
  25. 25.
    Arof AK, Aziz MF, Noor MM, Careem MA, Bandara LRAK, Thotawatthage CA, Rupasinghe WNS, Dissanayake MAKL (2014) Efficiency enhancement by mixed cation effect in dye-sensitized solar cells with a PVdF based gel polymer electrolyte. Int J Hydrog Energy 39(6):2929–2935CrossRefGoogle Scholar
  26. 26.
    Dissanayake MAKL, Thotawatthage CA, Senadeera GKR, Bandara TMWJ, Jayasundara WJMJSR, Mellander B-E (2013) Efficiency enhancement in dye sensitized solar cells based on PAN gel electrolyte with Pr4NI + MgI2 binary iodide salt mixture. J Appl Electrochem 43:891–901CrossRefGoogle Scholar
  27. 27.
    Dissanayake MAKL, Jayathissa R, Seneviratne VA, Thotawatthage CA, Senadeera GKR, Mellander B-E (2014) Polymethylmethacrylate (PMMA) based quasi-solid electrolyte with binary iodide salt for efficiency enhancement in TiO2 based dye sensitized solar cells. Solid State Ionics 265:85–91CrossRefGoogle Scholar
  28. 28.
    Song MY, Kim DK, Jo SM, Kim DY (2005) Enhancement of the photocurrent generation in dye-sensitized solar cell based on electrospun TiO2 electrode by surface treatment. Synth Met 155:635–638CrossRefGoogle Scholar
  29. 29.
    Song MY, Kim DK, Ihn KJ, Jo SM, Kim DY (2005) New application of electrospun TiO 2 electrode to solid-state dye-sensitized solar cells. Synth Met 153:77–80CrossRefGoogle Scholar
  30. 30.
    Tan B, Wu Y (2006) Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites. J Phys Chem B 110:15932–15938CrossRefGoogle Scholar
  31. 31.
    Lee S-W, Ahn K-S, Zhu K, Neale NR, Frank AJ (2012) Effects of TiCl4 treatment of nanoporous TiO2 films on morphology, light harvesting, and charge-carrier dynamics in dye-sensitized solar cells. J Phys Chem C 116(40):21285–21290CrossRefGoogle Scholar
  32. 32.
    Li J, Zhang H, Wang W, Qian Y, Zhenghui Li Z (2016) Improved performance of dye-sensitized solar cell based on TiO2 photoanode with FTO glass and film both treated by TiCl4. Physica B 500:48–52CrossRefGoogle Scholar
  33. 33.
    Vesce L, Riccitelli R, Soscia G, Brown TM, Di Carlo A, Andrea RA (2010) Optimization of nanostructured titania photoanodes for dye-sensitized solar cells: study and experimentation of TiCl4 treatment. J Non-Cryst Solids 356(37–40):1958–1961CrossRefGoogle Scholar
  34. 34.
    Xu H, Tao X, Wang DT, Zheng YZ, Chen JF (2010) Enhanced efficiency in dye-sensitized solar cells based on TiO2 nanocrystal/nanotube double-layered films. Electrochim Acta 55:2280–2285CrossRefGoogle Scholar
  35. 35.
    Saji VS, Pyo M (2010) Dye sensitized solar cell of TiO2 nanoparticle/nanorod composites prepared via low-temperature synthesis in oleic acid. Thin Solid Films 518:6542–6546CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • M. A. K. L. Dissanayake
    • 1
    • 2
  • H. N. M. Sarangika
    • 1
    • 2
    • 3
  • G. K. R. Senadeera
    • 1
    • 4
  • H. K. D. W. M. N. R. Divarathna
    • 1
  • E. M. P. C. Ekanayake
    • 1
  1. 1.National Institute of Fundamental StudiesKandySri Lanka
  2. 2.Postgraduate Institute of ScienceUniversity of PeradeniyaPeradeniyaSri Lanka
  3. 3.Department of Physical Sciences and TechnologySabaragamuwa University of Sri LankaBelihul OyaSri Lanka
  4. 4.Department of PhysicsThe Open University of Sri LankaNugegodaSri Lanka

Personalised recommendations