Advertisement

Journal of Applied Electrochemistry

, Volume 47, Issue 11, pp 1261–1271 | Cite as

Hydrogen peroxide sensor based on electrodeposited Prussian blue film

  • Si-Yuan Lu
  • Yihao Chen
  • Xufei Fang
  • Xue Feng
Research Article
Part of the following topical collections:
  1. Sensors

Abstract

Prussian blue (PB) films have been widely used for blood glucose monitoring. Here, we present the strategy to improve the performance and sensitivity of PB film for hydrogen peroxide (H2O2) monitoring by using modified gold electrode for hydrogen peroxide monitoring. The microstructure of the studied electrodes was characterized using scanning electron microscopy and atomic force microscopy. The electrochemical properties of experimental electrodes were obtained via cyclic voltammograms and chronoamperometry methods. The results show that the thickness of deposited PB film is increased with the deposition time. The PB-modified electrode exhibits the widest linear range and best operational stability after being electrochemically deposited for 240 s. The highest sensitivity for experimental electrodes is obtained on samples deposited for 40 s (341 mA cm−2 M−1), indicating that a thinner PB film with certain critical thickness can accelerate the exchanging rate of K+ between PB lattice and the tested solution.

Graphical Abstract

Keywords

Hydrogen peroxide Prussian blue Electrochemical deposition Electrochemically modified sensor 

Notes

Acknowledgement

We gratefully acknowledge the support from the National Basic Research Program of China (Grant No. 2015CB351900), National Natural Science Foundation of China (Grant Nos. 11222220, 11320101001, 11625207), and Tsinghua University Initiative Scientific Research Program.

References

  1. 1.
    Chen W, Cai S, Ren Q-Q, Wen W, Zhao Y-D (2012) Recent advances in electrochemical sensing for hydrogen peroxide: a review. Analyst 137(1):49–58. doi: 10.1039/C1AN15738H CrossRefGoogle Scholar
  2. 2.
    Ricci F, Palleschi G (2005) Sensor and biosensor preparation, optimisation and applications of Prussian blue modified electrodes. Biosens Bioelectron 21(3):389–407. doi: 10.1016/j.bios CrossRefGoogle Scholar
  3. 3.
    Jaffari SA, Turner APF (1997) Novel hexacyanoferrate(III) modified graphite disc electrodes and their application in enzyme electrodes—part I. Biosens Bioelectron 12(1):1–9CrossRefGoogle Scholar
  4. 4.
    Cinti S, Arduini F, Moscone D, Palleschi G, Killard A (2014) Development of a hydrogen peroxide sensor based on screen-printed electrodes modified with inkjet-printed Prussian blue nanoparticles. Sensors 14(8):14222–14234CrossRefGoogle Scholar
  5. 5.
    Gomes A, Fernandes E, Lima JLFC (2005) Fluorescence probes used for detection of reactive oxygen species. J Biochem Biophys Methods 65(2–3):45–80CrossRefGoogle Scholar
  6. 6.
    Nogueira RFP, Oliveira MC, Paterlini WC (2005) Simple and fast spectrophotometric determination of H2O2 in photo-Fenton reactions using metavanadate. Talanta 66(1):86–91. doi: 10.1016/j.talanta CrossRefGoogle Scholar
  7. 7.
    Hanaoka S, Lin J-M, Yamada M (2001) Chemiluminescent flow sensor for H2O2 based on the decomposition of H2O2 catalyzed by cobalt(II)-ethanolamine complex immobilized on resin. Anal Chim Acta 426(1):57–64CrossRefGoogle Scholar
  8. 8.
    Agnihotry SA, Singh P, Joshi AG, Singh DP, Sood KN, Shivaprasad SM (2006) Electrodeposited Prussian blue films: annealing effect. Electrochim Acta 51(20):4291–4301CrossRefGoogle Scholar
  9. 9.
    Omura A, Tanaka H, Kurihara M, Sakamoto M, Kawamoto T (2009) Electrochemical control of the elution property of Prussian blue nanoparticle thin films: mechanism and applications. Phys Chem Chem Phys 11(44):10500–10505. doi: 10.1039/B912004A CrossRefGoogle Scholar
  10. 10.
    Karyakin AA, Gitelmacher OV, Karyakina EE (1994) A high-sensitive glucose amperometric biosensor based on Prussian Blue modified electrodes. Anal Lett 27(15):2861–2869. doi: 10.1080/00032719408000297 CrossRefGoogle Scholar
  11. 11.
    Keggin J, Miles F (1936) Structures and formulae of the Prussian blues and related compounds. Nature 137(7):577–578CrossRefGoogle Scholar
  12. 12.
    Karyakin AA, Karyakina EE, Gorton L (1996) Prussian-Blue-based amperometric biosensors in flow-injection analysis. Talanta 43(9):1597–1606. doi: 10.1016/0039-9140(96)01909-1 CrossRefGoogle Scholar
  13. 13.
    Palleschi G, Ali Nabi Rahni M, Lubrano GJ, Ngwainbi JN, Guilbault GG (1986) A study of interferences in glucose measurements in blood by hydrogen peroxide based glucose probes. Anal Biochem 159(1):114–121. doi: 10.1016/0003-2697(86)90315-5 CrossRefGoogle Scholar
  14. 14.
    Karyakin AA, Karyakina EE, Gorton L (2000) Amperometric biosensor for glutamate using prussian blue-based “artificial peroxidase” as a transducer for hydrogen peroxide. Anal Chem 72(7):1720–1723. doi: 10.1021/ac990801o CrossRefGoogle Scholar
  15. 15.
    Ludi A, Güdel HU (1973) Structural chemistry of polynuclear transition metal cyanides. Inorganic chemistry. Springer, Berlin, pp 1–21Google Scholar
  16. 16.
    Neff VD (1978) Electrochemical oxidation and reduction of thin films of Prussian blue. J Electrochem Soc 125(6):886–887. doi: 10.1149/1.2131575 CrossRefGoogle Scholar
  17. 17.
    Itaya K, Uchida I, Neff VD (1986) Electrochemistry of polynuclear transition metal cyanides: Prussian blue and its analogues. Acc Chem Res 19(6):162–168. doi: 10.1021/ar00126a001 CrossRefGoogle Scholar
  18. 18.
    Bandodkar AJ, Jia W, Yardımcı C, Wang X, Ramirez J, Wang J (2015) Tattoo-based noninvasive glucose monitoring: a proof-of-concept study. Anal Chem 87(1):394–398. doi: 10.1021/ac504300n CrossRefGoogle Scholar
  19. 19.
    Zhang D, Wang K, Sun DC, Xia XH, Chen HY (2003) Ultrathin layers of densely packed prussian blue nanoclusters prepared from a ferricyanide solution. Chem Mater 15(22):4163–4165. doi: 10.1021/cm034594r CrossRefGoogle Scholar
  20. 20.
    Fu G, Yue X, Dai Z (2011) Glucose biosensor based on covalent immobilization of enzyme in sol–gel composite film combined with Prussian blue/carbon nanotubes hybrid. Biosens Bioelectron 26(9):3973–3976. doi: 10.1016/j.bios.2011.03.007 CrossRefGoogle Scholar
  21. 21.
    Zhang M, Hou C, Halder A, Ulstrup J, Chi Q (2017) Interlocked graphene–Prussian blue hybrid composites enable multifunctional electrochemical applications. Biosens Bioelectron 89(1):570–577. doi: 10.1016/j.bios.2016.02.044 CrossRefGoogle Scholar
  22. 22.
    Kim D-H, Viventi J, Amsden JJ, Xiao J, Vigeland L, Kim Y-S, Blanco JA, Panilaitis B, Frechette ES, Contreras D, Kaplan DL, Omenetto FG, Huang Y, Hwang K-C, Zakin MR, Litt B, Rogers JA (2010) Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat Mater 9(6):511–517CrossRefGoogle Scholar
  23. 23.
    Gao W, Emaminejad S, Nyein HYY, Challa S, Chen K, Peck A, Fahad HM, Ota H, Shiraki H, Kiriya D, Lien D-H, Brooks GA, Davis RW, Javey A (2016) Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529(7587):509–514. doi: 10.1038/nature16521 CrossRefGoogle Scholar
  24. 24.
    Mattos ILd, Gorton L, Ruzgas T, Karyakin AA (2000) Sensor for hydrogen peroxide based on Prussian blue modified electrode: improvement of the operational stability. Anal Sci 16(8):795–798. doi: 10.2116/analsci.16.795 CrossRefGoogle Scholar
  25. 25.
    de Mattos IL, Gorton L, Ruzgas T (2003) Sensor and biosensor based on Prussian Blue modified gold and platinum screen printed electrodes. Biosens Bioelectron 18(2–3):193–200CrossRefGoogle Scholar
  26. 26.
    Chen A, Rogers EI, Compton RG (2009) Abrasive stripping voltammetry in room temperature ionic liquids. Electroanal 21(1):29–35. doi: 10.1002/elan.200804401 CrossRefGoogle Scholar
  27. 27.
    Ahmadalinezhad A, Kafi AKM, Chen A (2009) Glucose biosensing based on the highly efficient immobilization of glucose oxidase on a Prussian blue modified nanostructured Au surface. Electrochem Commun 11(10):2048–2051CrossRefGoogle Scholar
  28. 28.
    Bard A, Faulkner L (2001) Electrochemical methods: fundamentals and applications. Wiley, New YorkGoogle Scholar
  29. 29.
    Khan R, Dhayal M (2008) Electrochemical studies of novel chitosan/TiO2 bioactive electrode for biosensing application. Electrochem Commun 10(2):263–267. doi: 10.1016/j.elecom.2007.12.001 CrossRefGoogle Scholar
  30. 30.
    Haghighi B, Hamidi H, Gorton L (2010) Electrochemical behavior and application of Prussian blue nanoparticle modified graphite electrode. Sensor Actuat B-Chem 147(1):270–276. doi: 10.1016/j.snb.2010.03.020 CrossRefGoogle Scholar
  31. 31.
    Karyakin AA, Puganova EA, Budashov IA, Kurochkin IN, Karyakina EE, Levchenko VA, Matveyenko VN, Varfolomeyev SD (2004) Prussian blue based nanoelectrode arrays for H2O2 detection. Anal Chem 76(2):474–478. doi: 10.1021/ac034859l CrossRefGoogle Scholar
  32. 32.
    Borisova AV, Karyakina EE, Cosnier S, Karyakin AA (2009) Current-free deposition of Prussian blue with organic polymers: towards improved stability and mass production of the advanced hydrogen peroxide transducer. Electroanal 21(3–5):409–414. doi: 10.1002/elan.200804408 CrossRefGoogle Scholar
  33. 33.
    Talagaeva NV, Zolotukhina EV, Bezverkhyy I, Konev DV, Lacroute Y, Maksimova EY, Koryakin SL, Vorotyntsev MA (2015) Stability of Prussian blue–polypyrrole (PB/PPy) composite films synthesized via one-step redox-reaction procedure. J Solid State Electrochem 19(9):2701–2709. doi: 10.1007/s10008-015-2951-3 CrossRefGoogle Scholar
  34. 34.
    Lin Y, Hu L, Yin L, Guo L (2015) Electrochemical glucose biosensor with improved performance based on the use of glucose oxidase and Prussian Blue incorporated into a thin film of self-polymerized dopamine. Sensor Actuat B-Chem 210:513–518. doi: 10.1016/j.snb.2014.12.107 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Si-Yuan Lu
    • 1
    • 2
  • Yihao Chen
    • 1
    • 2
  • Xufei Fang
    • 1
    • 2
    • 3
  • Xue Feng
    • 1
    • 2
  1. 1.AML, School of Aerospace EngineeringTsinghua UniversityBeijingChina
  2. 2.Center for Advanced Mechanics and MaterialsTsinghua UniversityBeijingChina
  3. 3.Max-Planck-Institut für Eisenforschung GmbHDüsseldorfGermany

Personalised recommendations