Skip to main content
Log in

Electrochemical comparison of LiFePO4 synthesized by a solid-state method using either microwave heating or a tube furnace

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

LiFePO4/C composites were successfully prepared by a solid-state reaction in order to compare conventional heat treatment and microwave-assisted synthesis at different times of sintering. Microwave-assisted synthesis is interesting due to the fact that energy and inert gas consumption can be greatly reduced with respect to the conventional treatment, resulting in a cheaper synthesis method. The relationship between particle morphology and crystal structure using the composite synthesis was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD) with refinements of the crystal structures carried out by the Rietveld method. In addition, the electrochemical performances were evaluated using constant current charge/discharge tests, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). It was observed that the samples prepared by microwave heating had a better electrochemical behavior than those prepared in a conventional furnace. Also, in general, a higher sintering time improved the electrochemical behavior, but with increased particle sizes, and consequently, a decreased specific capacity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4301. doi:10.1021/cr020731c

    Article  CAS  Google Scholar 

  2. Zhang WJ (2011) Structure and performance of LiFePO4 cathode materials: a review. J Power Sources 196:2962–2970. doi:10.1016/j.jpowsour.2010.11.113

    Article  CAS  Google Scholar 

  3. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors ? Chem Rev 104:4245–4270. doi:10.1021/cr020730k

    Article  CAS  Google Scholar 

  4. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194. doi:10.1684/agr.2014.0700

    Article  CAS  Google Scholar 

  5. Peng P, Jiang F (2016) Thermal safety of lithium-ion batteries with various cathode materials: a numerical study. Int J Heat Mass Transf 103:1008–1016. doi:10.1016/j.ijheatmasstransfer.2016.07.088

    Article  CAS  Google Scholar 

  6. Zhou F, Kang K, Maxisch T et al (2004) The electronic structure and band gap of LiFePO4 and LiMnPO4. Solid State Commun 132:181–186. doi:10.1016/j.ssc.2004.07.055

    Article  CAS  Google Scholar 

  7. Inagaki M (2012) Carbon coating for enhancing the functionalities of materials. Carbon N Y 50:3247–3266. doi:10.1016/j.carbon.2011.11.045

    Article  CAS  Google Scholar 

  8. Feng J, Wang Y (2016) High-rate and ultralong cycle-life LiFePO4 nanocrystals coated by boron-doped carbon as positive electrode for lithium-ion batteries. Appl Surf Sci 390:481–488. doi:10.1016/j.apsusc.2016.08.066

    Article  CAS  Google Scholar 

  9. Wang J, Sun X (2015) Olivine LiFePO4: the remaining challenges for future energy storage. Energy Environ Sci 8:1110–1138. doi:10.1039/C4EE04016C

    Article  CAS  Google Scholar 

  10. Hsieh C-T, Liu J-R, Juang R-S et al (2015) Microwave synthesis of copper network onto lithium iron phosphate cathode materials for improved electrochemical performance. Mater Chem Phys 153:103–109. doi:10.1016/j.matchemphys.2014.12.040

    Article  CAS  Google Scholar 

  11. Naik A, Zhou J, Gao C et al (2016) Rapid and facile synthesis of Mn doped porous LiFePO4/C from iron carbonyl complex. J Energy Inst 89:21–29. doi:10.1016/j.joei.2015.01.013

    Article  CAS  Google Scholar 

  12. Jugović D, Uskoković D (2009) A review of recent developments in the synthesis procedures of lithium iron phosphate powders. J Power Sources 190:538–544. doi:10.1016/j.jpowsour.2009.01.074

    Article  Google Scholar 

  13. Wang Z, Guo H, Yan P (2014) A rapid microwave heating route to synthesize graphene modified LiFePO4/C nanocomposite for rechargeable lithium-ion batteries. Ceram Int 40:15801–15806. doi:10.1016/j.ceramint.2014.07.106

    Article  CAS  Google Scholar 

  14. Yu F, Zhang L, Zhu M et al (2014) Overwhelming microwave irradiation assisted synthesis of olivine-structured LiMPO4 (M = Fe, Mn, Co and Ni) for Li-ion batteries. Nano Energy 3:64–79. doi:10.1016/j.nanoen.2013.10.011

    Article  CAS  Google Scholar 

  15. Wang L, Liang GC, Ou XQ et al (2009) Effect of synthesis temperature on the properties of LiFePO4/C composites prepared by carbothermal reduction. J Power Sources 189:423–428. doi:10.1016/j.jpowsour.2008.07.032

    Article  CAS  Google Scholar 

  16. Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71. doi:10.1107/S0021889869006558

    Article  CAS  Google Scholar 

  17. Rodríguez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Phys B Condens Matter 192:55–69. doi:10.1016/0921-4526(93)90108-I

    Article  Google Scholar 

  18. Zhu Y, Tang S, Shi H, Hu H (2014) Synthesis of FePO4∙×H2O for fabricating submicrometer structured LiFePO4/C by a co-precipitation method. Ceram Int 40:2685–2690. doi:10.1016/j.ceramint.2013.10.055

    Article  CAS  Google Scholar 

  19. Kim CW, Lee MH, Jeong WT, Lee KS (2005) Synthesis of olivine LiFePO4 cathode materials by mechanical alloying using iron(III) raw material. J Power Sources 146:534–538. doi:10.1016/j.jpowsour.2005.03.058

    Article  CAS  Google Scholar 

  20. Kim CW, Park JS, Lee KS (2006) Effect of Fe2P on the electron conductivity and electrochemical performance of LiFePO4 synthesized by mechanical alloying using Fe3+ raw material. J Power Sources 163:144–150. doi:10.1016/j.jpowsour.2006.02.071

    Article  CAS  Google Scholar 

  21. Yamada A, Chung SC, Hinokuma K (2001) Optimized LiFePO4 for lithium battery cathodes. J Electrochem Soc 148:A224–A229. doi:10.1149/1.1348257

    Article  CAS  Google Scholar 

  22. Hu YS, Guo YG, Dominko R et al (2007) Improved electrode performance of porous LiFePO4 using RuO2 as an oxidic nanoscale interconnect. Adv Mater 19:1963–1966. doi:10.1002/adma.200700697

    Article  CAS  Google Scholar 

  23. Yu F, Zhang J, Yang Y, Song G (2010) Porous micro-spherical aggregates of LiFePO4/C nanocomposites: a novel and simple template-free concept and synthesis via sol-gel-spray drying method. J Power Sources 195:6873–6878. doi:10.1016/j.jpowsour.2010.01.042

    Article  CAS  Google Scholar 

  24. Zhang M, Liu R, Feng F et al (2015) Etching preparation of (010)-defective LiFePO4 platelets to visualize the one-dimensional migration of Li+ ions. J Phys Chem C 119:12149–12156. doi:10.1021/acs.jpcc.5b02270

    Article  CAS  Google Scholar 

  25. Delacourt C, Laffont L, Bouchet R et al (2005) Toward understanding of electrical limitations (electronic, ionic) in LiMPO4 (M = Fe, Mn) electrode materials. J Electrochem Soc 152:A913. doi:10.1149/1.1884787

    Article  CAS  Google Scholar 

  26. Wang J, Sun X (2012) Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries. Energy Environ Sci 5:5163–5185. doi:10.1039/C1EE01263K

    Article  CAS  Google Scholar 

  27. Bard AJ, Faulkner LR, York N et al (1944) Electrochemical methods fundamentals and applications. Electrochem I Faulkner, Larry R. doi:10.1016/B978-0-12-381373-2.00056-9

  28. Yu DYW, Fietzek C, Weydanz W et al (2007) Study of LiFePO4 by cyclic voltammetry. J Electrochem Soc 154:A253. doi:10.1149/1.2434687

    Article  CAS  Google Scholar 

  29. Morgan D, Van der Ven A, Ceder G (2004) Li conductivity in LixMPO4 (M = Mn, Fe Co, Ni) olivine materials. Electrochem Solid-State Lett 7:A30. doi:10.1149/1.1633511

    Article  CAS  Google Scholar 

  30. Ouyang C, Shi S, Wang Z et al (2004) First-principles study of Li ion diffusion in LiFePO4. Phys Rev B 69:104303. doi:10.1103/PhysRevB.69.104303

    Article  Google Scholar 

  31. Park CK, Bin Park S, Oh SH et al (2011) Li ion diffusivity and improved electrochemical performances of the carbon coated LiFePO4. Bull Korean Chem Soc 32:836–840. doi:10.5012/bkcs.2011.32.3.836

    Article  CAS  Google Scholar 

  32. Prosini PP, Lisi M, Zane D, Pasquali M (2002) Determination of the chemical diffusion coefficient of lithium in LiFePO4. Solid State Ionics 148:45–51. doi:10.1016/S0167-2738(02)00134-0

    Article  CAS  Google Scholar 

  33. Park M, Zhang X, Chung M et al (2010) A review of conduction phenomena in Li-ion batteries. J Power Sources 195:7904–7929. doi:10.1016/j.jpowsour.2010.06.060

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the financial support of the “CONICET UE Desarrollo de Baterías de Litio,” Argentina. We thank Dr. Paul Hobson, native speaker, for revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia A. Calderón.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 891 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calderón, C.A., Thomas, J.E., Lener, G. et al. Electrochemical comparison of LiFePO4 synthesized by a solid-state method using either microwave heating or a tube furnace. J Appl Electrochem 47, 1179–1188 (2017). https://doi.org/10.1007/s10800-017-1111-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-017-1111-0

Keywords

Navigation