Advertisement

Journal of Applied Electrochemistry

, Volume 47, Issue 7, pp 803–814 | Cite as

CsH5(PO4)2/quartz fiber thin membranes for intermediate temperature fuel cells and electrochemical synthesis of ammonia

  • Geletu Qing
  • Kazuya Sukegawa
  • Ryuji Kikuchi
  • Atsushi Takagaki
  • Shigeo Ted Oyama
Research Article
Part of the following topical collections:
  1. Fuel cells

Abstract

In this study, CsH5(PO4)2/quartz fiber thin membranes with thicknesses varying from 70 to 150 μm were prepared by a simple impregnation method and were tested as an electrolyte for fuel cell and electrolytic cell applications. The membranes consisted of a physical dispersion of CsH5(PO4)2 in the quartz fiber matrix. The crystalline structure and thermal behavior of CsH5(PO4)2 were not influenced by the quartz fiber. The membrane showed a high conductivity of 33 mS cm−1 at 180–250 °C under 30% H2O/Ar atmosphere. In addition, the membranes had area-specific resistances of 0.32 and 0.73 Ω cm2, for corresponding thicknesses of 70 and 150 μm, which are sufficiently low values compared with those of pellet-type electrolytes. The membrane showed stable conductivity at 220 °C under 30% H2O/Ar atmosphere for 20 h. A fuel cell assembled with the membrane exhibited an open-circuit voltage of 0.93 V and peak power densities of 105 and 72 mW cm−2, for corresponding thicknesses of 70 and 150 μm. In addition, ammonia was successfully synthesized from humidified hydrogen and nitrogen under atmospheric pressure in an electrolytic cell assembled with the membrane. An ammonia formation rate of 2.8 × 10−10 mol cm−2 s−1 and a Faradaic efficiency of 0.09% were obtained at 220 °C when the applied voltage was 0.05 V. With the increase of the applied voltage, both ammonia formation rate and Faradaic efficiency decreased rapidly.

Graphical abstract

Keywords

Electrolyte Membrane Intermediate temperature fuel cells Electrolysis Ammonia synthesis CsH5(PO4)2 

Notes

Acknowledegments

This work was supported by CREST, Japan Science and Technology Agency (JST).

Supplementary material

10800_2017_1082_MOESM1_ESM.doc (510 kb)
Supplementary material 1 (DOC 510 kb)

References

  1. 1.
    Toyota MC (2017) The 2017 Toyota Mirai fuel cell vehicle. https://ssl.toyota.com/mirai/fcv.html. Accessed 5 February 2017
  2. 2.
    JLPGA (2017) Home-use fuel cell (ENE-FARM). http://www.j-lpgas.gr.jp/en/appliances/index.html#ENE-FARM. Accessed 5 February 2017
  3. 3.
    Panagos E, Voudouris I, Stoukides M (1996) Modelling of equilibrium limited hydrogenation reactions carried out in H+ conducting solid oxide membrane reactors. Chem Eng Sci 51(11):3175–3180. doi: 10.1016/0009-2509(96)00216-3 CrossRefGoogle Scholar
  4. 4.
    Marnellos G, Stoukides M (1998) Ammonia synthesis at atmospheric pressure. Science 282(5386):98–100. doi: 10.1126/science.282.5386.98 CrossRefGoogle Scholar
  5. 5.
    Amar IA, Lan R, Petit CTG, Tao SW (2011) Solid-state electrochemical synthesis of ammonia: a review. J Solid State Electrochem 15(9):1845–1860. doi: 10.1007/s10008-011-1376-x CrossRefGoogle Scholar
  6. 6.
    Licht S, Cui BC, Wang BH, Li FF, Lau J, Liu SZ (2014) Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3. Science 345(6197):637–640. doi: 10.1126/science.1254234 CrossRefGoogle Scholar
  7. 7.
    Lan R, Irvine JT, Tao S (2013) Synthesis of ammonia directly from air and water at ambient temperature and pressure. Sci Rep 3:1145. doi: 10.1038/srep01145 CrossRefGoogle Scholar
  8. 8.
    Kim K, Lee N, Yoo CY, Kim JN, Yoon HC, Han JI (2016) Communication-electrochemical reduction of nitrogen to ammonia in 2-propanol under ambient temperature and pressure. J Electrochem Soc 163(7):F610–F612. doi: 10.1149/2.0231607jes CrossRefGoogle Scholar
  9. 9.
    Detz RJ, Sakai K, Spiccia L, Brudvig GW, Sun LC, Reek JNH (2016) Towards a bioinspired-systems approach for solar fuel devices. ChemPlusChem 81(10):1024–1027. doi: 10.1002/cplu.201600446 CrossRefGoogle Scholar
  10. 10.
    Little DJ, Smith MR, Hamann TW (2015) Electrolysis of liquid ammonia for hydrogen generation. Energy Environ Sci 8(9):2775–2781. doi: 10.1039/c5ee01840d CrossRefGoogle Scholar
  11. 11.
    Lan R, Irvine JTS, Tao SW (2012) Ammonia and related chemicals as potential indirect hydrogen storage materials. Int J Hydrogen Energy 37(2):1482–1494. doi: 10.1016/j.ijhydene.2011.10.004 CrossRefGoogle Scholar
  12. 12.
    Paschos O, Kunze J, Stimming U, Maglia F (2011) A review on phosphate based, solid state, protonic conductors for intermediate temperature fuel cells. J Phys-Condes Matter 23(23):234110. doi: 10.1088/0953-8984/23/23/234110 CrossRefGoogle Scholar
  13. 13.
    Thoi VS, Usiskin RE, Haile SM (2015) Platinum-decorated carbon nanotubes for hydrogen oxidation and proton reduction in solid acid electrochemical cells. Chem Sci 6(2):1570–1577. doi: 10.1039/c4sc03003f CrossRefGoogle Scholar
  14. 14.
    Varga A, Pfohl M, Brunelli NA, Schreier M, Giapis KP, Haile SM (2013) Carbon nanotubes as electronic interconnects in solid acid fuel cell electrodes. Phys Chem Chem Phys 15(37):15470–15476. doi: 10.1039/c3cp52586d CrossRefGoogle Scholar
  15. 15.
    Xiao J, Zhang HM, Yang ZJ, Wang HT, Ma GL, Zhou ZF (2012) Proton and oxide-ion conduction in ZnO doped SnP2O7 ceramics. J Alloy Compd 521:106–111. doi: 10.1016/j.jallcom.2012.01.058 CrossRefGoogle Scholar
  16. 16.
    Norby T (2001) The promise of protonics. Nature 410(6831):877–878. doi: 10.1038/35073718 CrossRefGoogle Scholar
  17. 17.
    Jin YC, Lee B, Hibino T (2010) Development and application of SnP2O7-based proton conductors to intermediate-temperature fuel cells. J Jpn Pet Inst 53(1):12–23. doi: 10.1627/jpi.53.12 CrossRefGoogle Scholar
  18. 18.
    Hibino T (2011) Intermediate-temperature proton conductors and their applications to energy and environmental devices. J Ceram Soc Jpn 119(1393):677–686. doi: 10.2109/jcersj2.119.677 CrossRefGoogle Scholar
  19. 19.
    Muroyama H, Matsui T, Kikuchi R, Eguchi K (2008) Influence of the supporting matrix on the electrochemical properties of CsH5(PO4)2 composites at intermediate temperatures. J Phys Chem C 112(39):15532–15536. doi: 10.1021/jp8043362 CrossRefGoogle Scholar
  20. 20.
    Matsui T, Kukino T, Kikuchi R, Eguchi K (2006) Composite effects of silicon pyrophosphate as a supporting matrix for CsH5(PO4)2 electrolytes at intermediate temperatures. Electrochim Acta 51(18):3719–3723. doi: 10.1016/j.electacta.2005.10.026 CrossRefGoogle Scholar
  21. 21.
    Matsui T, Muroyama H, Kikuchi R, Eguchi K (2010) Development of novel proton conductors consisting of solid acid/pyrophosphate composite for intermediate-temperature fuel cells. J Jpn Pet Inst 53(1):1–11. doi: 10.1627/jpi.53.1 CrossRefGoogle Scholar
  22. 22.
    Lavrova GV, Ponomareva VG (2008) Intermediate-temperature composite proton electrolyte CsH5(PO4)2/SiO2: transport properties versus oxide characteristic. Solid State Ionics 179(21–26):1170–1173. doi: 10.1016/j.ssi.2008.01.003 CrossRefGoogle Scholar
  23. 23.
    Muroyama H, Akagi T, Matsui T, Eguchi K (2012) Mixed alkali effect on thermal and electrochemical properties of MH5(PO4)2/SiP2O7 composite electrolytes at intermediate temperatures. Solid State Ionics 225:663–666. doi: 10.1016/j.ssi.2012.03.037 CrossRefGoogle Scholar
  24. 24.
    Goni-Urtiaga A, Presvytes D, Scott K (2012) Solid acids as electrolyte materials for proton exchange membrane (PEM) electrolysis: review. Int J Hydrogen Energy 37(4):3358–3372. doi: 10.1016/j.ijhydene.2011.09.152 CrossRefGoogle Scholar
  25. 25.
    Muroyama H, Kudo K, Matsui T, Kikuchi R, Eguchi K (2007) Electrochemical properties of MH2PO4/SiP2O7-based electrolytes (M = alkaline metal) for use in intermediate-temperature fuel cells. Solid State Ionics 178(27–28):1512–1516. doi: 10.1016/j.ssi.2007.09.005 CrossRefGoogle Scholar
  26. 26.
    Matsui T, Noto T, Muroyama H, Iijima M, Eguchi K (2011) Intermediate-temperature fuel cell employing thin-film solid acid/phosphate composite electrolyte fabricated by electrostatic spray deposition. J Power Sources 196(22):9445–9450. doi: 10.1016/j.jpowsour.2011.07.004 CrossRefGoogle Scholar
  27. 27.
    Gradisek A, Dimnik B, Vrtnik S, Wencka M, Fraczek MZ, Lavrova GV, Dolinsek J (2011) The hydrogen dynamics of CsH5(PO4)2 studied by means of nuclear magnetic resonance. J Phys-Condes Matter 23(8):085901. doi: 10.1088/0953-8984/23/8/085901 CrossRefGoogle Scholar
  28. 28.
    Qing GLT, Kikuchi R, Takagaki A, Sugawara T, Oyama ST (2014) CsH5(PO4)2 doped glass membranes for intermediate temperature fuel cells. J Power Sources 272:1018–1029. doi: 10.1016/j.jpowsour.2014.09.025 CrossRefGoogle Scholar
  29. 29.
    Qing G, Kikuchi R (2016) Interfacial interaction and melting point depression of CsH5(PO4)2 in CsH5(PO4)2/SiO2 composites. Solid State Ionics 289:133–142. doi: 10.1016/j.ssi.2016.03.013 CrossRefGoogle Scholar
  30. 30.
    Andriyevsky B, Zdanowska-Fraczek M (2012) DFT-based ab initio study of band structure of CsH5(PO4)2 crystals. Solid State Ionics 207:14–20. doi: 10.1016/j.ssi.2011.11.027 CrossRefGoogle Scholar
  31. 31.
    Croce F, Cigna G (1982) Determination of the protonic transference number for KH2PO4 by electromotive force measurements. Solid State Ionics 6(3):201–202. doi: 10.1016/0167-2738(82)90039-X CrossRefGoogle Scholar
  32. 32.
    Kikuchi R, Ogawa A, Matsuoka T, Takagaki A, Sugawara T, Oyama ST (2016) Interfacial conduction mechanism of cesium hydrogen phosphate and silicon pyrophosphate composite electrolytes for intermediate-temperature fuel cells. Solid State Ionics 285:160–164. doi: 10.1016/j.ssi.2015.10.008 CrossRefGoogle Scholar
  33. 33.
    Qing G, Kikuchi R, Takagaki A, Sugawara T, Oyama ST (2016) Stability of CsH5(PO4)2-based composites at fixed temperatures and during heating-cooling cycles for solid-state intermediate temperature fuel cells. J Power Sources 306:578–586. doi: 10.1016/j.jpowsour.2015.12.101 CrossRefGoogle Scholar
  34. 34.
    Yoshimi S, Matsui T, Kikuchi R, Eguchi K (2008) Temperature and humidity dependence of the electrode polarization in intermediate-temperature fuel cells employing CsH2PO4/SiP2O7-based composite electrolytes. J Power Sources 179(2):497–503. doi: 10.1016/j.jpowsour.2008.01.003 CrossRefGoogle Scholar
  35. 35.
    Matsui T, Kukino T, Kikuchi R, Eguchi K (2006) Intermediate-temperature fuel cell employing CsH2PO4/SiP2O7-based composite electrolytes. J Electrochem Soc 153(2):A339–A342. doi: 10.1149/1.2142211 CrossRefGoogle Scholar
  36. 36.
    Ryu YG, Pyun SI, Kim CS, Shin DR (1998) A study on the formation of surface functional groups during oxygen reduction on a platinum-dispersed carbon electrode in an 85% H3PO4 solution at elevated temperature. Carbon 36(3):293–298. doi: 10.1016/S0008-6223(97)00188-7 CrossRefGoogle Scholar
  37. 37.
    Matsui T, Kukino T, Kikuchi R, Eguchi K (2005) An intermediate temperature proton-conducting electrolyte based on a CsH2PO4/SiP2O7 composite. Electrochem Solid State Lett 8(5):A256–A258. doi: 10.1149/1.1883906 CrossRefGoogle Scholar
  38. 38.
    Lan R, Tao SW (2013) Electrochemical synthesis of ammonia directly from air and water using a Li+/H+/NH4 + mixed conducting electrolyte. RSC Adv 3(39):18016–18021. doi: 10.1039/c3ra43432j CrossRefGoogle Scholar
  39. 39.
    Amar IA, Petit CTG, Lan R, Mann G, Tao SW (2014) Electrochemical synthesis of ammonia from wet nitrogen using La0.6Sr0.4FeO3−δ-Ce0.8Gd0.18Ca0.02O2−δ composite cathode. RSC Adv 4(36):18749-18754. doi: 10.1039/c4ra02090a
  40. 40.
    Lan R, Alkhazmi KA, Amar IA, Tao SW (2014) Synthesis of ammonia directly from wet air at intermediate temperature. Appl Catal B: Environ 152:212–217. doi: 10.1016/j.apcatb.2014.01.037 CrossRefGoogle Scholar
  41. 41.
    Fan LD, Zhang GQ, Chen MM, Wang CY, Di J, Zhu B (2012) Proton and oxygen ionic conductivity of doped ceria-carbonate composite by modified Wagner polarization. Int J Electrochem Sci 7(9):8420–8435Google Scholar
  42. 42.
    Shao YY, Yin GP, Wang ZB, Gao YZ (2007) Proton exchange membrane fuel cell from low temperature to high temperature: material challenges. J Power Sources 167(2):235–242. doi: 10.1016/j.jpowsour.2007.02.065 CrossRefGoogle Scholar
  43. 43.
    Zhang JL, Xie Z, Zhang JJ, Tanga YH, Song CJ, Navessin T, Shi ZQ, Song DT, Wang HJ, Wilkinson DP, Liu ZS, Holdcroft S (2006) High temperature PEM fuel cells. J Power Sources 160(2):872–891. doi: 10.1016/j.jpowsour.2006.05.034 CrossRefGoogle Scholar
  44. 44.
    Amar IA, Lan R, Petit CTG, Arrighi V, Tao SW (2011) Electrochemical synthesis of ammonia based on a carbonate-oxide composite electrolyte. Solid State Ionics 182(1):133–138. doi: 10.1016/j.ssi.2010.11.009 CrossRefGoogle Scholar
  45. 45.
    Amar IA, Lan R, Petit CTG, Tao S (2015) Electrochemical synthesis of ammonia using Fe3Mo3N catalyst and carbonate-oxide composite electrolyte. Int J Electrochem Sci 10(5):3757–3766Google Scholar
  46. 46.
    Amar IA, Lan R, Petit CTG, Tao SW (2015) Electrochemical synthesis of ammonia based on Co3Mo3N catalyst and LiAlO2-(Li, Na, K)2CO3 composite electrolyte. Electrocatalysis 6(3):286–294. doi: 10.1007/s12678-014-0242-x CrossRefGoogle Scholar
  47. 47.
    Li YG, Wang HL, Xie LM, Liang YY, Hong GS, Dai HJ (2011) MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc 133(19):7296–7299. doi: 10.1021/ja201269b CrossRefGoogle Scholar
  48. 48.
    Abghoui Y, Garden AL, Hlynsson VF, Bjorgvinsdottir S, Olafsdottir H, Skulason E (2015) Enabling electrochemical reduction of nitrogen to ammonia at ambient conditions through rational catalyst design. Phys Chem Chem Phys 17(7):4909–4918. doi: 10.1039/c4cp04838e CrossRefGoogle Scholar
  49. 49.
    Abdelkader A, Ammar AA, Saleh SI (1991) Thermal behaviour of ammonium dihydrogen phosphate crystals in the temperature range 25–600 °C. Thermochim Acta 176:293–304. doi: 10.1016/0040-6031(91)80285-Q CrossRefGoogle Scholar
  50. 50.
    Patnaik P (2003) Handbook of inorganic chemicals. McGraw-Hill, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Geletu Qing
    • 1
    • 2
  • Kazuya Sukegawa
    • 1
  • Ryuji Kikuchi
    • 1
    • 2
  • Atsushi Takagaki
    • 1
  • Shigeo Ted Oyama
    • 1
    • 3
  1. 1.Department of Chemical System EngineeringThe University of TokyoTokyoJapan
  2. 2.CRESTJapan Science and Technology Agency (JST)TokyoJapan
  3. 3.Department of Chemical EngineeringVirginia TechBlacksburgUSA

Personalised recommendations