Advertisement

Journal of Applied Electrochemistry

, Volume 47, Issue 6, pp 661–678 | Cite as

Progress in inorganic cathode catalysts for electrochemical conversion of carbon dioxide into formate or formic acid

  • Dongwei Du
  • Rong Lan
  • John Humphreys
  • Shanwen TaoEmail author
Review Paper
Part of the following topical collections:
  1. Electrochemical Processes

Abstract

As a greenhouse gas, carbon dioxide in the atmosphere is one of the key contributors to climate change. Many strategies have been proposed to address this issue, such as CO2 capture and sequestration (CCS) and CO2 utilization (CCU). Electroreduction of CO2 into useful fuels is proving to be a promising technology as it not only consumes CO2 but can also store the redundant electrical energy generated from renewable energy sources (e.g., solar, wind, geothermal, wave, etc.) as chemical energy in the produced chemicals. Among all of products from CO2 electroconversion, formic acid is one of the highest value-added chemicals, which is economically feasible for large-scale applications. This paper summarizes the work on inorganic cathode catalysts for the electrochemical reduction of CO2 to formic acid or formate. The reported metal and oxide cathode catalysts are discussed in detail according to their performance including current density, Faradaic efficiency, and working potentials. In addition, the effects of electrolyte, temperature, and pressure are also analyzed. The electroreduction of CO2 to formic acid or formate is still at an early stage with several key challenges that need to be addressed before commercialization. The major challenges and the future directions for developing new electrocatalysts for the reduction of CO2 to formic acid are discussed in this review.

Graphical abstract

Keywords

Review Electrochemical synthesis CO2 utilization CO2 reduction Formic acid Formate Catalysts 

Notes

Acknowledgements

One of the authors (Du) thanks the University of Warwick for a PhD studentship.

References

  1. 1.
    Lim RJ, Xie M, Sk MA et al (2014) A review on the electrochemical reduction of CO2 in fuel cells, metal electrodes and molecular catalysts. Catal Today 233:169–180CrossRefGoogle Scholar
  2. 2.
    Global Greenhouse Gas Reference Network. http://www.esrl.noaa.gov/gmd/ccgg/trends/. Accessed 10 Mar 2017
  3. 3.
    Le Quéré C, Andres RJ, Boden T et al (2012) The global carbon budget 1959–2011. Earth Syst Sci Data Discuss 5:1107–1157CrossRefGoogle Scholar
  4. 4.
    Le Quéré C, Moriarty R, Andrew RM et al (2015) Global carbon budget 2014. Earth Syst Sci Data 7:47–85CrossRefGoogle Scholar
  5. 5.
    Le Quéré C, Moriarty R, Andrew RM et al (2015) Global carbon budget 2015. Earth Syst Sci Data 7:349–396CrossRefGoogle Scholar
  6. 6.
    Ampelli C, Perathoner S, Centi G (2015) CO2 utilization: an enabling element to move to a resource-and energy-efficient chemical and fuel production. Philos Trans R Soc Lond A Math Phys Eng Sci 373:20140177CrossRefGoogle Scholar
  7. 7.
    Solomon S, Plattner G-K, Knutti R, Friedlingstein P (2009) Irreversible climate change due to carbon dioxide emissions. Proc Natl Acad Sci USA 106:1704–1709CrossRefGoogle Scholar
  8. 8.
    Agarwal AS, Zhai Y, Hill D, Sridhar N (2011) The electrochemical reduction of carbon dioxide to formate/formic acid: engineering and economic feasibility. ChemSusChem 4:1301–1310CrossRefGoogle Scholar
  9. 9.
    Aresta M (2010) Carbon dioxide as chemical feedstock. Wiley, HobokenCrossRefGoogle Scholar
  10. 10.
    Berndt ME, Allen DE, Seyfried WE (1996) Reduction of CO2 during serpentinization of olivine at 300 C and 500 bar. Geology 24:351–354CrossRefGoogle Scholar
  11. 11.
    Centi G, Perathoner S (2009) Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catal Today 148:191–205CrossRefGoogle Scholar
  12. 12.
    Wang W, Wang SP, Ma XB, Gong JL (2011) Recent advances in catalytic hydrogenation of carbon dioxide. Chem Soc Rev 40:3703–3727CrossRefGoogle Scholar
  13. 13.
    Varghese OK, Paulose M, LaTempa TJ, Grimes CA (2009) High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Lett 9:731–737CrossRefGoogle Scholar
  14. 14.
    Roy SC, Varghese OK, Paulose M, Grimes CA (2010) Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano 4:1259–1278CrossRefGoogle Scholar
  15. 15.
    Sydney EB, Sturm W, de Carvalho JC et al (2010) Potential carbon dioxide fixation by industrially important microalgae. Bioresour Technol 101:5892–5896CrossRefGoogle Scholar
  16. 16.
    Wang B, Li YQ, Wu N, Lan CQ (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79:707–718CrossRefGoogle Scholar
  17. 17.
    Collombdunandsauthier MN, Deronzier A, Ziessel R (1994) Electrocatalytic reduction of carbon-dioxide with mono(bipyridine)carbonylruthenium complexes in solution or as polymeric thin-films. Inorg Chem 33:2961–2967CrossRefGoogle Scholar
  18. 18.
    Kuhl KP, Cave ER, Abram DN, Jaramillo TF (2012) New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ Sci 5:7050–7059CrossRefGoogle Scholar
  19. 19.
    Peterson AA, Abild-Pedersen F, Studt F, Rossmeisl J, Norskov JK (2010) How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ Sci 3:1311–1315CrossRefGoogle Scholar
  20. 20.
    Finn C, Schnittger S, Yellowlees LJ, Love JB (2012) Molecular approaches to the electrochemical reduction of carbon dioxide. Chem Commun (Camb) 48:1392–1399CrossRefGoogle Scholar
  21. 21.
    Qiao J, Liu Y, Hong F, Zhang J (2014) A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem Soc Rev 43:631–675CrossRefGoogle Scholar
  22. 22.
    Finn C, Schnittger S, Yellowlees LJ, Love JB (2012) Molecular approaches to the electrochemical reduction of carbon dioxide. Chem Commun 48:1392–1399CrossRefGoogle Scholar
  23. 23.
    Rice C, Ha S, Masel R, Waszczuk P, Wieckowski A, Barnard T (2002) Direct formic acid fuel cells. J Power Sources 111:83–89CrossRefGoogle Scholar
  24. 24.
    Zhu Y, Ha SY, Masel RI (2004) High power density direct formic acid fuel cells. J Power Sources 130:8–14CrossRefGoogle Scholar
  25. 25.
    Yu X, Pickup PG (2008) Recent advances in direct formic acid fuel cells (DFAFC). J Power Sources 182:124–132CrossRefGoogle Scholar
  26. 26.
    Zelitch I, Ochoa S (1953) Oxidation and reduction of glycolic and glyoxylic acids in plants I. Glycolic acid oxidase. J Biol Chem 201:707–718Google Scholar
  27. 27.
    Grasemann M, Laurenczy G (2012) Formic acid as a hydrogen source–recent developments and future trends. Energy Environ Sci 5:8171–8181CrossRefGoogle Scholar
  28. 28.
    Genovese C, Ampelli C, Perathoner S, Centi G (2013) Electrocatalytic conversion of CO 2 on carbon nanotube-based electrodes for producing solar fuels. J Catal 308:237–249CrossRefGoogle Scholar
  29. 29.
    Shown I, Hsu H-C, Chang Y-C et al (2014) Highly efficient visible light photocatalytic reduction of CO2 to hydrocarbon fuels by Cu-nanoparticle decorated graphene oxide. Nano Lett 14:6097–6103CrossRefGoogle Scholar
  30. 30.
    De Falco M, Capocelli M, Centi G (2016) Dimethyl ether production from CO2 rich feedstocks in a one-step process: thermodynamic evaluation and reactor simulation. Chem Eng J 294:400–409CrossRefGoogle Scholar
  31. 31.
    Subramanian K, Asokan K, Jeevarathinam D, Chandrasekaran M (2007) Electrochemical membrane reactor for the reduction of carbondioxide to formate. J Appl Electrochem 37:255–260CrossRefGoogle Scholar
  32. 32.
    Song CS (2006) Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catal Today 115:2–32CrossRefGoogle Scholar
  33. 33.
    Rosen BA, Salehi-Khojin A, Thorson MR et al (2011) Ionic liquid–mediated selective conversion of CO2 to CO at low overpotentials. Science 334:643–644CrossRefGoogle Scholar
  34. 34.
    Li CW, Kanan MW (2012) CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J Am Chem Soc 134:7231–7234CrossRefGoogle Scholar
  35. 35.
    Lu Q, Rosen J, Zhou Y et al (2014) A selective and efficient electrocatalyst for carbon dioxide reduction. Nat Commun 5:3242Google Scholar
  36. 36.
    Zhu W, Zhang Y-J, Zhang H et al (2014) Active and selective conversion of CO2 to CO on ultrathin Au nanowires. J Am Chem Soc 136:16132–16135CrossRefGoogle Scholar
  37. 37.
    Chen Y, Kanan MW (2012) Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. J Am Chem Soc 134:1986–1989CrossRefGoogle Scholar
  38. 38.
    Innocent B, Liaigre D, Pasquier D, Ropital F, Léger J-M, Kokoh K (2009) Electro-reduction of carbon dioxide to formate on lead electrode in aqueous medium. J Appl Electrochem 39:227–232CrossRefGoogle Scholar
  39. 39.
    Barton Cole E, Lakkaraju PS, Rampulla DM, Morris AJ, Abelev E, Bocarsly AB (2010) Using a one-electron shuttle for the multielectron reduction of CO2 to methanol: kinetic, mechanistic, and structural insights. J Am Chem Soc 132:11539–11551CrossRefGoogle Scholar
  40. 40.
    Le M, Ren M, Zhang Z, Sprunger PT, Kurtz RL, Flake JC (2011) Electrochemical reduction of CO2 to CH3OH at copper oxide surfaces. J Electrochem Soc 158:E45–E49CrossRefGoogle Scholar
  41. 41.
    Yan Y, Zeitler EL, Gu J, Hu Y, Bocarsly AB (2013) Electrochemistry of aqueous pyridinium: exploration of a key aspect of electrocatalytic reduction of CO2 to methanol. J Am Chem Soc 135:14020–14023CrossRefGoogle Scholar
  42. 42.
    Back S, Kim H, Jung Y (2015) Selective heterogeneous CO2 electroreduction to methanol. ACS Catal 5:965–971CrossRefGoogle Scholar
  43. 43.
    Reske R, Duca M, Oezaslan M, Schouten KJP, Koper MT, Strasser P (2013) Controlling catalytic selectivities during CO2 electroreduction on thin Cu metal overlayers. J Phys Chem Lett 4:2410–2413CrossRefGoogle Scholar
  44. 44.
    Roberts FS, Kuhl KP, Nilsson A (2015) High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts. Angew Chem 127:5268–5271CrossRefGoogle Scholar
  45. 45.
    Peterson AA, Nørskov JK (2012) Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J Phys Chem Lett 3:251–258CrossRefGoogle Scholar
  46. 46.
    Manthiram K, Beberwyck BJ, Alivisatos AP (2014) Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst. J Am Chem Soc 136:13319–13325CrossRefGoogle Scholar
  47. 47.
    Jhong H-R, Ma S, Kenis PJ (2013) Electrochemical conversion of CO2 to useful chemicals: current status, remaining challenges, and future opportunities. Curr Opin Chem Eng 2:191–199CrossRefGoogle Scholar
  48. 48.
    Zhu DD, Liu JL, Qiao SZ (2016) Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv Mater 28:3423–3452CrossRefGoogle Scholar
  49. 49.
    Chaplin R, Wragg A (2003) Effects of process conditions and electrode material on reaction pathways for carbon dioxide electroreduction with particular reference to formate formation. J Appl Electrochem 33:1107–1123CrossRefGoogle Scholar
  50. 50.
    Lu X, Leung DYC, Wang H, Leung MKH, Xuan J (2014) Electrochemical reduction of carbon dioxide to formic acid. ChemElectroChem 1:836–849CrossRefGoogle Scholar
  51. 51.
    Taheri A, Berben LA (2016) Making C–H bonds with CO2: production of formate by molecular electrocatalysts. Chem Commun 52:1768–1777CrossRefGoogle Scholar
  52. 52.
    Oloman C, Li H (2008) Electrochemical processing of carbon dioxide. ChemSusChem 1:385–391CrossRefGoogle Scholar
  53. 53.
    Kaneco S, Iwao R, Iiba K, Ohta K, Mizuno T (1998) Electrochemical conversion of carbon dioxide to formic acid on Pb in KOH/methanol electrolyte at ambient temperature and pressure. Energy 23:1107–1112CrossRefGoogle Scholar
  54. 54.
    Lide DR (2004) CRC handbook of chemistry and physics. CRC Press, Boca RatonGoogle Scholar
  55. 55.
    Köleli F, Balun D (2004) Reduction of CO2 under high pressure and high temperature on Pb-granule electrodes in a fixed-bed reactor in aqueous medium. Appl Catal A 274:237–242CrossRefGoogle Scholar
  56. 56.
    Jing W, Hua W, Zhenzhen H, Jinyu H (2015) Electrodeposited porous Pb electrode with improved electrocatalytic performance for the electroreduction of CO2 to formic acid. Front Chem Sci Eng 9:57–63CrossRefGoogle Scholar
  57. 57.
    Kwon Y, Lee J (2010) Formic acid from carbon dioxide on nanolayered electrocatalyst. Electrocatalysis 1:108–115CrossRefGoogle Scholar
  58. 58.
    Alvarez-Guerra M, Quintanilla S, Irabien A (2012) Conversion of carbon dioxide into formate using a continuous electrochemical reduction process in a lead cathode. Chem Eng J 207:278–284CrossRefGoogle Scholar
  59. 59.
    Lee CH, Kanan MW (2014) Controlling H+ vs CO2 reduction selectivity on Pb electrodes. ACS Catal 5:465–469CrossRefGoogle Scholar
  60. 60.
    Back S, Kim J-H, Kim Y-T, Jung Y (2016) On the mechanism of high product selectivity for HCOOH using Pb in CO2 electroreduction. Phys Chem Chem Phys 18:9652–9657CrossRefGoogle Scholar
  61. 61.
    Lv W, Zhang R, Gao P, Lei L (2014) Studies on the faradaic efficiency for electrochemical reduction of carbon dioxide to formate on tin electrode. J Power Sources 253:276–281CrossRefGoogle Scholar
  62. 62.
    Zhang R, Lv W, Li G, Mezaal MA, Li X, Lei L (2014) Retarding of electrochemical oxidation of formate on the platinum anode by a coat of Nafion membrane. J Power Sources 272:303–310CrossRefGoogle Scholar
  63. 63.
    Wu J, Harris B, Sharma PP, Zhou X-D (2013) Morphological stability of Sn electrode for electrochemical conversion of CO2. ECS Trans 58:71–80CrossRefGoogle Scholar
  64. 64.
    Wang Q, Dong H, Yu H (2014) Development of rolling tin gas diffusion electrode for carbon dioxide electrochemical reduction to produce formate in aqueous electrolyte. J Power Sources 271:278–284CrossRefGoogle Scholar
  65. 65.
    Prakash GS, Viva FA, Olah GA (2013) Electrochemical reduction of CO2 over Sn-Nafion® coated electrode for a fuel-cell-like device. J Power Sources 223:68–73CrossRefGoogle Scholar
  66. 66.
    Wang Q, Dong H, Yu H (2014) Fabrication of a novel tin gas diffusion electrode for electrochemical reduction of carbon dioxide to formic acid. RSC Adv 4:59970–59976CrossRefGoogle Scholar
  67. 67.
    Lei F, Liu W, Sun Y et al (2016) Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction. Nat Commun 7:12697CrossRefGoogle Scholar
  68. 68.
    Zhang S, Kang P, Meyer TJ (2014) Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. J Am Chem Soc 136:1734–1737CrossRefGoogle Scholar
  69. 69.
    Zhao C, Wang J (2016) Electrochemical reduction of CO2 to formate in aqueous solution using electro-deposited Sn catalysts. Chem Eng J 293:161–170CrossRefGoogle Scholar
  70. 70.
    Du D, Lan R, Humphreys J et al (2016) Achieving both high selectivity and current density for CO2 reduction to formate on nanoporous tin foam electrocatalysts. ChemistrySelect 1:1711–1715CrossRefGoogle Scholar
  71. 71.
    Wang Y, Zhou J, Lv W, Fang H, Wang W (2016) Electrochemical reduction of CO2 to formate catalyzed by electroplated tin coating on copper foam. Appl Surf Sci 362:394–398CrossRefGoogle Scholar
  72. 72.
    Choi SY, Jeong SK, Kim HJ, Baek IH, Park KT (2016) Electrochemical reduction of carbon dioxide to formate on tin-lead alloys. ACS Sustain Chem Eng 4:1311–1318CrossRefGoogle Scholar
  73. 73.
    Wu J, Risalvato FG, Ma S, Zhou X-D (2014) Electrochemical reduction of carbon dioxide III. The role of oxide layer thickness on the performance of Sn electrode in a full electrochemical cell. J Mater Chem A 2:1647–1651CrossRefGoogle Scholar
  74. 74.
    Zhao C, Wang J, Goodenough JB (2016) Comparison of electrocatalytic reduction of CO2 to HCOOH with different tin oxides on carbon nanotubes. Electrochem Commun 65:9–13CrossRefGoogle Scholar
  75. 75.
    Li F, Chen L, Knowles GP, MacFarlane DR, Zhang J (2017) Hierarchical mesoporous SnO2 Nanosheets on carbon cloth: a robust and flexible electrocatalyst for CO2 reduction with high efficiency and selectivity. Angew Chem 129:520–524CrossRefGoogle Scholar
  76. 76.
    Kumar B, Atla V, Brian JP et al (2017) Reduced SnO2 porous nanowires with a high density of grain boundaries as catalysts for efficient electrochemical CO2-into-HCOOH conversion. Angew Chem Int Ed 56:3645–3649CrossRefGoogle Scholar
  77. 77.
    Kapusta S, Hackerman N (1983) The electroreduction of carbon dioxide and formic acid on tin and indium electrodes. J Electrochem Soc 130:607–613CrossRefGoogle Scholar
  78. 78.
    Hori Y, Kikuchi K, Suzuki S (1985) Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution. Chem Lett 14:1695–1698CrossRefGoogle Scholar
  79. 79.
    Ikeda S, Takagi T, Ito K (1987) Selective formation of formic acid, oxalic acid, and carbon monoxide by electrochemical reduction of carbon dioxide. Bull Chem Soc Jpn 60:2517–2522CrossRefGoogle Scholar
  80. 80.
    Martindale BC, Compton RG (2012) Formic acid electro-synthesis from carbon dioxide in a room temperature ionic liquid. Chem Commun 48:6487–6489CrossRefGoogle Scholar
  81. 81.
    Rosen BA, Zhu W, Kaul G, Salehi-Khojin A, Masel RI (2013) Water enhancement of CO2 conversion on silver in 1-ethyl-3-methylimidazolium tetrafluoroborate. J Electrochem Soc 160:H138–H141CrossRefGoogle Scholar
  82. 82.
    Watkins JD, Bocarsly AB (2014) Direct reduction of carbon dioxide to formate in high-gas-capacity ionic liquids at post-transition-metal electrodes. ChemSusChem 7:284–290CrossRefGoogle Scholar
  83. 83.
    Cherevko S, Zeradjanin AR, Keeley GP, Mayrhofer KJ (2014) A comparative study on gold and platinum dissolution in acidic and alkaline media. J Electrochem Soc 161:H822–H830CrossRefGoogle Scholar
  84. 84.
    Rand D, Woods R (1972) A study of the dissolution of platinum, palladium, rhodium and gold electrodes in 1 M sulphuric acid by cyclic voltammetry. J Electroanal Chem Interfacial Electrochem 35:209–218CrossRefGoogle Scholar
  85. 85.
    Yadav VSK, Purkait MK (2015) Electrochemical reduction of CO2 to HCOOH using zinc and cobalt oxide as electrocatalysts. New J Chem 39:7348–7354CrossRefGoogle Scholar
  86. 86.
    Yadav VSK, Purkait MK (2016) Solar cell driven electrochemical process for the reduction of CO2 to HCOOH on Zn and Sn electrocatalysts. Sol Energy 124:177–183CrossRefGoogle Scholar
  87. 87.
    Hori Y, Takahashi I, Koga O, Hoshi N (2002) Selective formation of C2 compounds from electrochemical reduction of CO2 at a series of copper single crystal electrodes. J Phys Chem B 106:15–17CrossRefGoogle Scholar
  88. 88.
    Kaneco S, Hiei N-H, Xing Y et al (2003) High-efficiency electrochemical CO2-to-methane reduction method using aqueous KHCO3 media at less than 273 K. J Solid State Electrochem 7:152–156CrossRefGoogle Scholar
  89. 89.
    Yim K-J, Song D-K, Kim C-S et al (2015) Selective, high efficiency reduction of CO2 in a non-diaphragm-based electrochemical system at low applied voltage. RSC Adv 5:9278–9282CrossRefGoogle Scholar
  90. 90.
    Kaneco S, Iiba K, Hiei N-H, Ohta K, Mizuno T, Suzuki T (1999) Electrochemical reduction of carbon dioxide to ethylene with high Faradaic efficiency at a Cu electrode in CsOH/methanol. Electrochim Acta 44:4701–4706CrossRefGoogle Scholar
  91. 91.
    Takahashi I, Koga O, Hoshi N, Hori Y (2002) Electrochemical reduction of CO2 at copper single crystal Cu(S)-[n(111) × (111)] and Cu(S)-[n(110) × (100)] electrodes. J Electroanal Chem 533:135–143CrossRefGoogle Scholar
  92. 92.
    Kaneco S, Katsumata H, Suzuki T, Ohta K (2006) Electrochemical reduction of CO2 to methane at the Cu electrode in methanol with sodium supporting salts and its comparison with other alkaline salts. Energy Fuels 20:409–414CrossRefGoogle Scholar
  93. 93.
    Sen S, Liu D, Palmore GTR (2014) Electrochemical reduction of CO2 at copper nanofoams. ACS Catal 4:3091–3095CrossRefGoogle Scholar
  94. 94.
    Guo S, Zhao S, Gao J et al (2017) Cu-CDots nanocorals as electrocatalyst for highly efficient CO2 reduction to formate. Nanoscale 9:298–304CrossRefGoogle Scholar
  95. 95.
    Zhao Y, Nakamura R, Kamiya K, Nakanishi S, Hashimoto K (2013) Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation. Nat Commun 4:1–7CrossRefGoogle Scholar
  96. 96.
    Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323:760–764CrossRefGoogle Scholar
  97. 97.
    Liu R, Wu D, Feng X, Müllen K (2010) Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction. Angew Chem 122:2619–2623CrossRefGoogle Scholar
  98. 98.
    Wu J, Yadav RM, Liu M et al (2015) Achieving highly efficient, selective, and stable CO2 reduction on nitrogen-doped carbon nanotubes. ACS Nano 9:5364–5371CrossRefGoogle Scholar
  99. 99.
    Sharma PP, Wu J, Yadav RM et al (2015) Nitrogen-Doped Carbon Nanotube Arrays for High-Efficiency Electrochemical Reduction of CO2: on the Understanding of Defects, Defect Density, and Selectivity. Angew Chem 127:13905–13909CrossRefGoogle Scholar
  100. 100.
    Kumar B, Asadi M, Pisasale D et al (2013) Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction. Nat Commun 4:2819–2826Google Scholar
  101. 101.
    Zhang S, Kang P, Ubnoske S et al (2014) Polyethylenimine-enhanced electrocatalytic reduction of CO2 to formate at nitrogen-doped carbon nanomaterials. J Am Chem Soc 136:7845–7848CrossRefGoogle Scholar
  102. 102.
    Wang H, Chen Y, Hou X, Ma C, Tan T (2016) Nitrogen-doped graphenes as efficient electrocatalysts for the selective reduction of carbon dioxide to formate in aqueous solution. Green Chem 18:3250–3256CrossRefGoogle Scholar
  103. 103.
    Sreekanth N, Nazrulla MA, Vineesh TV, Sailaja K, Phani KL (2015) Metal-free boron-doped graphene for selective electroreduction of carbon dioxide to formic acid/formate. Chem Commun 51:16061–16064CrossRefGoogle Scholar
  104. 104.
    Gao S, Jiao X, Sun Z et al (2016) Ultrathin Co3O4 Layers Realizing Optimized CO2 Electroreduction to Formate. Angew Chem Int Ed 55:698–702CrossRefGoogle Scholar
  105. 105.
    Gao S, Lin Y, Jiao X et al (2016) Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 529:68–71CrossRefGoogle Scholar
  106. 106.
    Gao S, Sun Z, Liu W et al (2017) Atomic layer confined vacancies for atomic-level insights into carbon dioxide electroreduction. Nat Commun 8:14503–14511Google Scholar
  107. 107.
    Kortlever R, Balemans C, Kwon Y, Koper MT (2015) Electrochemical CO2 reduction to formic acid on a Pd-based formic acid oxidation catalyst. Catal Today 244:58–62CrossRefGoogle Scholar
  108. 108.
    Rahaman M, Dutta A, Broekmann P (2017) Size-dependent activity of palladium nanoparticles: efficient conversion of CO2 into formate at low overpotentials. ChemSusChem. doi: 10.1002/cssc.201601778 Google Scholar
  109. 109.
    Isaacs M, Armijo F, Ramírez G et al (2005) Electrochemical reduction of CO2 mediated by poly-M-aminophthalocyanines (M = Co, Ni, Fe): poly-Co-tetraaminophthalocyanine, a selective catalyst. J Mol Catal A Chem 229:249–257CrossRefGoogle Scholar
  110. 110.
    Isaacs M, Canales J, Aguirre M et al (2002) Electrocatalytic reduction of CO2 by aza-macrocyclic complexes of Ni (II), Co (II), and Cu (II). Theoretical contribution to probable mechanisms. Inorg Chim Acta 339:224–232CrossRefGoogle Scholar
  111. 111.
    Pérez-Rodríguez S, Barreras F, Pastor E, Lázaro M (2016) Electrochemical reactors for CO2 reduction: from acid media to gas phase. Int J Hydrog Energy 41:19756–19765CrossRefGoogle Scholar
  112. 112.
    Pérez-Rodríguez S, García G, Calvillo L, Celorrio V, Pastor E, Lázaro M (2011) Carbon-supported Fe catalysts for CO2 electroreduction to high-added value products: a DEMS study: effect of the functionalization of the support. Int J Electrochem. doi: 10.4061/2011/249804 Google Scholar
  113. 113.
    Ampelli C, Genovese C, Marepally B, Papanikolaou G, Perathoner S, Centi G (2015) Electrocatalytic conversion of CO2 to produce solar fuels in electrolyte or electrolyte-less configurations of PEC cells. Faraday Discuss 183:125–145CrossRefGoogle Scholar
  114. 114.
    Reda T, Plugge CM, Abram NJ, Hirst J (2008) Reversible interconversion of carbon dioxide and formate by an electroactive enzyme. Proc Natl Acad Sci USA 105:10654–10658CrossRefGoogle Scholar
  115. 115.
    Wu J, Risalvato FG, Ke F-S, Pellechia P, Zhou X-D (2012) Electrochemical reduction of carbon dioxide I. Effects of the electrolyte on the selectivity and activity with Sn electrode. J Electrochem Soc 159:F353–F359CrossRefGoogle Scholar
  116. 116.
    Won DH, Choi CH, Chung J, Chung MW, Kim EH, Woo SI (2015) Rational design of a hierarchical tin dendrite electrode for efficient electrochemical reduction of CO2. ChemSusChem 8:3092–3098CrossRefGoogle Scholar
  117. 117.
    Tezuka M, Yajima T, Tsuchiya A, Matsumoto Y, Uchida Y, Hidai M (1982) Electroreduction of carbon dioxide catalyzed by iron-sulfur cluster compounds [Fe4S4(SR)4]2. J Am Chem Soc 104:6834–6836CrossRefGoogle Scholar
  118. 118.
    Ishida H, Tanaka H, Tanaka K, Tanaka T (1987) Selective formation of HCOO in the electrochemical CO2 reduction catalyzed by Ru(bpy)2(CO)22+ (bpy = 2,2′-bipyridine). J Chem Soc Chem Commun 2:131–132CrossRefGoogle Scholar
  119. 119.
    Ali MM, Sato H, Mizukawa T, Tsuge K, Haga M, Tanaka K (1998) Selective formation of HCO2 and C2O4 2− in electrochemical reduction of CO2 catalyzed by mono- and di-nuclear ruthenium complexes. Chemical Communications 2:249–250CrossRefGoogle Scholar
  120. 120.
    Ahn ST, Bielinski EA, Lane EM et al (2015) Enhanced CO2 electroreduction efficiency through secondary coordination effects on a pincer iridium catalyst. Chem Commun 51:5947–5950CrossRefGoogle Scholar
  121. 121.
    Kortlever R, Peters I, Koper S, Koper MT (2015) Electrochemical CO2 reduction to formic acid at low overpotential and with high faradaic efficiency on carbon supported bimetallic Pd-Pt nanoparticles. ACS Catal 5:3916–3923CrossRefGoogle Scholar
  122. 122.
    Feroci M, Orsini M, Rossi L, Sotgiu G, Inesi A (2007) Electrochemically promoted C–N bond formation from amines and CO2 in ionic liquid BMIm–BF4: synthesis of carbamates. J Org Chem 72:200–203CrossRefGoogle Scholar
  123. 123.
    Snuffin LL, Whaley LW, Yu L (2011) Catalytic electrochemical reduction of CO2 in ionic liquid EMIMBF3Cl. J Electrochem Soc 158:F155–F158CrossRefGoogle Scholar
  124. 124.
    Grace AN, Choi SY, Vinoba M et al (2014) Electrochemical reduction of carbon dioxide at low overpotential on a polyaniline/Cu2O nanocomposite based electrode. Appl Energy 120:85–94CrossRefGoogle Scholar
  125. 125.
    Eneau-Innocent B, Pasquier D, Ropital F, Léger J-M, Kokoh K (2010) Electroreduction of carbon dioxide at a lead electrode in propylene carbonate: a spectroscopic study. Appl Catal B 98:65–71CrossRefGoogle Scholar
  126. 126.
    Jitaru M, Lowy D, Toma M, Toma B, Oniciu L (1997) Electrochemical reduction of carbon dioxide on flat metallic cathodes. J Appl Electrochem 27:875–889CrossRefGoogle Scholar
  127. 127.
    Ogura K, Ferrell JR III, Cugini AV, Smotkin ES, Salazar-Villalpando MD (2010) CO2 attraction by specifically adsorbed anions and subsequent accelerated electrochemical reduction. Electrochim Acta 56:381–386CrossRefGoogle Scholar
  128. 128.
    Bhugun I, Lexa D, Saveant JM (1996) Catalysis of the electrochemical reduction of carbon dioxide by iron(0) porphyrins. Synergistic effect of Lewis acid cations. J Phys Chem 100:19981–19985CrossRefGoogle Scholar
  129. 129.
    Thorson MR, Siil KI, Kenis PJ (2013) Effect of cations on the electrochemical conversion of CO2 to CO. J Electrochem Soc 160:F69–F74CrossRefGoogle Scholar
  130. 130.
    Ryu J, Andersen T, Eyring H (1972) Electrode reduction kinetics of carbon dioxide in aqueous solution. J Phys Chem 76:3278–3286CrossRefGoogle Scholar
  131. 131.
    Mizuno T, Ohta K, Sasaki A, Akai T, Hirano M, Kawabe A (1995) Effect of temperature on electrochemical reduction of high-pressure CO2 with In, Sn, and Pb electrodes. Energy Sources 17:503–508CrossRefGoogle Scholar
  132. 132.
    Ito K, Ikeda S, Okabe M (1980) Electrochemical reduction of carbon-dioxide dissolved under high-pressure 1. in an aqueous-solution of inorganic salt. Denki Kagaku 48:247–252Google Scholar
  133. 133.
    Ito K, Ikeda S, Iida T, Niwa H (1981) Electrochemical reduction of carbon-dioxide dissolved under high-pressure 2. in aqueous-solution of tetraalkylammonium salts. Denki Kagaku 49:106–112Google Scholar
  134. 134.
    Ito K, Ikeda S, Iida T, Nomura A (1982) Electrochemical reduction of carbon-dioxide dissolved under high-pressure 3. in non-aqueous electrolytes. Denki Kagaku 50:463–469Google Scholar
  135. 135.
    Asano K, Hibino T, Iwahara H (1995) A novel solid oxide fuel cell system using the partial oxidation of methane. J Electrochem Soc 142:3241–3245CrossRefGoogle Scholar
  136. 136.
    Todoroki M, Hara K, Kudo A, Sakata T (1995) Electrochemical reduction of high pressure CO2 at Pb, Hg and In electrodes in an aqueous KHCO3 solution. J Electroanal Chem 394:199–203CrossRefGoogle Scholar
  137. 137.
    Scialdone O, Galia A, Nero GL, Proietto F, Sabatino S, Schiavo B (2016) Electrochemical reduction of carbon dioxide to formic acid at a tin cathode in divided and undivided cells: effect of carbon dioxide pressure and other operating parameters. Electrochim Acta 199:332–341CrossRefGoogle Scholar
  138. 138.
    Martín AJ, Larrazábal GO, Pérez-Ramírez J (2015) Towards sustainable fuels and chemicals through the electrochemical reduction of CO 2: lessons from water electrolysis. Green Chem 17:5114–5130CrossRefGoogle Scholar
  139. 139.
    Hirunsit P (2013) Electroreduction of carbon dioxide to methane on copper, copper–silver, and copper–gold catalysts: a DFT study. J Phys Chem C 117:8262–8268CrossRefGoogle Scholar
  140. 140.
    Kahl T, Schröder K, Lawrence F, Marshall W, Höke H, Jäckh R (2002) Ullmann’s Encyclopedia of industrial chemistry. Wiley, WeinheimGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.School of EngineeringUniversity of WarwickCoventryUK
  2. 2.Department of Chemical EngineeringMonash UniversityClaytonAustralia

Personalised recommendations