Skip to main content
Log in

Electrodeposition behavior and characterization of copper–zinc alloy in deep eutectic solvent

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Cu–Zn alloy films have been electrodeposited directly from their oxide precursors in choline chloride (ChCl)/urea-based deep eutectic solvent (DES). The reaction mechanism and the influence of the cathodic potential on the characteristics of the Cu–Zn alloy films are studied. Cyclic voltammetry and energy dispersive spectroscopy analyses reveal that the reduction of Cu(II) species relatively more preferentially occurs in comparison with the reduction of Zn(II) species, and Cu–Zn codeposition process can be controlled in the DES. Chronoamperometric investigation further confirms that the electrodeposition of Cu–Zn alloy on a Fe electrode follows the three-dimensional instantaneous nucleation-growth process. The micro/nanostructured Cu–Zn alloy films with different phase compositions can be facilely produced by controlling the cathodic potential. The obtained Cu–Zn alloy films typically exhibit enhanced corrosion resistances in 3 wt% NaCl aqueous solution. It is suggested that Cu–Zn alloy films can be sustainably electrodeposited from their abundant and inexpensive oxide precursors in DES.

Graphical Abstract

Micro/nanostructured Cu−Zn alloy films have been electrodeposited directly from CuO and ZnO precursors in deep eutectic solvent (DES), the electrochemical reaction mechanism and the nucleation-growth process of Cu−Zn alloy in the DES are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Milošev I, Mikić TK, Gaberšček M (2006) The effect of Cu-rich sub-layer on the increased corrosion resistance of Cu–xZn alloys in chloride containing borate buffer. Electrochim Acta 52:415–426. doi:10.1016/j.electacta.2006.05.024

    Article  Google Scholar 

  2. Hsieh YT, Tsai RW, Su CJ, Sun IW (2014) Electrodeposition of CuZn from chlorozincate ionic liquid: from hollow tubes to segmented nanowires. J Phys Chem C 118:22347–22355. doi:10.1021/jp506833s

    Article  CAS  Google Scholar 

  3. Zhang P, An XH, Zhang ZJ, Wu SD, Li SX, Zhang ZF, Figueiredo RB, Gao N, Langdon TG (2012) Optimizing strength and ductility of Cu–Zn alloys through severe plastic deformation. Scr Mater 67:871–874. doi:10.1016/j.scriptamat.2012.07.040

    Article  CAS  Google Scholar 

  4. Paatsch W (2010) Hydrogen embrittlement in electroplating: avoidance using pulse plating. Trans Inst Met Finish 88:277–278. doi:10.1179/002029610X12791981507848

    Article  CAS  Google Scholar 

  5. Mais L, Mascia M, Vacca A, Palmas S, Delogu F (2015) Electrochemical deposition of Cu and Ta from pyrrolidinium based ionic liquid. J Appl Electrochem 45:735–744. doi:10.1007/s10800-015-0824-1

    Article  CAS  Google Scholar 

  6. Endres F, Abbott AP, MacFarlane DR (2008) Electrodeposition from ionic liquids. Wiley-VCH, Weinheim

    Book  Google Scholar 

  7. Hartley JM, Ip CM, Forrest G, Singh K, Gurman SJ, Ryder KS, Abbott AP, Frisch G (2014) EXAFS study into the speciation of metal salts dissolved in ionic liquids and deep eutectic solvents. Inorg Chem 53:6280–6288. doi:10.1021/ic500824r

    Article  CAS  Google Scholar 

  8. Chen PY, Lin MC, Sun IW (2000) Electrodeposition of Cu–Zn alloy from a Lewis acidic ZnCl2–EMIC molten salt. J Electrochem Soc 147:3350–3355. doi:10.1149/1.1393905

    Article  CAS  Google Scholar 

  9. Rousse C, Beaufils S, Fricoteaux P (2013) Electrodeposition of Cu–Zn thin films from room temperature ionic liquid. Electrochim Acta 107:624–631. doi:10.1016/j.electacta.2013.06.053

    Article  CAS  Google Scholar 

  10. Endres F, Zein El Abedin S (2006) Air and water stable ionic liquids in physical chemistry. Phys Chem Chem Phys 8:2101–2116. doi:10.1039/b600519p

    Article  CAS  Google Scholar 

  11. Zein El Abedin S, Saad AY, Farag HK, Borisenko N, Liu QX, Endres F (2007) Electrodeposition of selenium, indium and copper in an air- and water-stable ionic liquid at variable temperatures. Electrochim Acta 52:2746–2754. doi:10.1016/j.electacta.2006.08.064

    Article  CAS  Google Scholar 

  12. Chen PY, Hussey CL (2007) The electrodeposition of Mn and Zn–Mn alloys from the room-temperature tri-1-butylmethylammonium bis((trifluoromethane)sulfonyl)imide ionic liquid. Electrochim Acta 52:1857–1864. doi:10.1016/j.electacta.2006.07.049

    Article  CAS  Google Scholar 

  13. Abbott AP, Capper G, Davies DL, Rasheed RK, Tambyrajah V (2003) Novel solvent properties of choline chloride/urea mixtures. Chem Commun 1: 70–71. doi:10.1039/b210714g

    Google Scholar 

  14. Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK (2004) Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J Am Chem Soc 126:9142–9147. doi:10.1021/ja048266j

    Article  CAS  Google Scholar 

  15. Hamad AA, Hayyan M, AlSaadi MA, Hashim MA (2015) Potential applications of deep eutectic solvents in nanotechnology. Chem Eng J 273:551–567. doi:10.1016/j.cej.2015.03.091

    Article  Google Scholar 

  16. Carriazo D, Serrano MC, Gutiérrez MC, Ferrer ML, Monte F (2012) Deep-eutectic solvents playing multiple roles in the synthesis of polymers and related materials. Chem Soc Rev 41:4996–5014. doi:10.1039/c2cs15353j

    Article  CAS  Google Scholar 

  17. Deferm C, Hulsegge J, Möller C, Thijs B (2013) Erratum to: electrochemical dissolution of metallic platinum in ionic liquids. J Appl Electrochem 43:797–804. doi:10.1007/s10800-013-0555-0

    Article  CAS  Google Scholar 

  18. Dai YT, Spronsen JV, Witkamp GJ, Verpoorte R, Choi YH (2013) Natural deep eutectic solvents as new potential media for green technology. Anal Chim Acta 766:61–68. doi:10.1016/j.aca.2012.12.019

    Article  CAS  Google Scholar 

  19. Böck R, Lanzinger G, Freudenberger R, Mehner T, Nickel D, Scharf I, Lampke T (2013) Effect of additive and current mode on surface morphology of palladium films from a non-aqueous deep eutectic solution (DES). J Appl Electrochem 43:1207–1216. doi:10.1007/s10800-013-0608-4

    Article  Google Scholar 

  20. Abbott AP, Ttaib KE, Frisch G, Ryder KS, Weston D (2012) The electrodeposition of silver composites using deep eutectic solvents. Phys Chem Chem Phys 14:2443–2449. doi:10.1039/c2cp23712a

    Article  CAS  Google Scholar 

  21. Abbott AP, Capper G, Davies DL, Rasheed RK, Shikotra P (2005) Selective extraction of metals from mixed oxide matrixes using choline-based ionic liquids. Inorg Chem 44:6497–6499. doi:10.1021/ic0505450

    Article  CAS  Google Scholar 

  22. Abbott AP, Capper G, Davies DL, McKenzie KJ, Obi SU (2006) Solubility of metal oxides in deep eutectic solvents based on choline chloride. J Chem Eng Data 51:1280–1282. doi:10.1021/je060038c

    Article  CAS  Google Scholar 

  23. Abbott AP, Collins J, Dalrymple L, Harris RC, Mistry R, Qiu F, Scheirer J, Wise WR (2009) Processing of electric arc furnace dust using deep eutectic solvents. Aust J Chem 62:341–347. doi:10.1071/CH08476

    Article  CAS  Google Scholar 

  24. Tsuda T, Boyd LE, Kuwabata S, Hussey CL (2010) Electrochemistry of copper(I) oxide in the 66.7–33.3 mol % urea–choline chloride room-temperature eutectic melt. J Electrochem Soc 157:F96–F103. doi:10.1149/1.3377117

    Article  Google Scholar 

  25. Yang HX, Reddy RG (2014) Electrochemical deposition of zinc from zinc oxide in 2:1 urea/choline chloride ionic liquid. Electrochim Acta 147:513–519. doi:10.1016/j.electacta.2014.09.137

    Article  CAS  Google Scholar 

  26. Yang HX, Reddy RG (2014) Fundamental studies on electrochemical deposition of lead from lead oxide in 2:1 urea/choline chloride ionic liquids. J Electrochem Soc 161:D586–D592. doi:10.1149/2.1161410jes

    Article  CAS  Google Scholar 

  27. Zhang QB, Wang R, Chen KH, Hua YX (2014) Electrolysis of solid copper oxide to copper in Choline chloride-EG eutectic melt. Electrochim Acta 121:78–82. doi:10.1016/j.electacta.2013.12.114

    Article  CAS  Google Scholar 

  28. Ru JJ, Hua YX, Wang D, Xu CY, Li J, Li Y, Zhou ZR, Gong K (2015) Mechanistic insight of in situ electrochemical reduction of solid PbO to lead in ChCl-EG deep eutectic solvent. Electrochim Acta 1 8 6 :45 5–464. doi:10.1016/j.electacta.2015.11.013

    Google Scholar 

  29. Ru JJ, Hua YX, Wang D, Xu CY, Zhang QB, Li J, Li Y (2016) Dissolution-electrodeposition pathway and bulk porosity on the impact of in situ reduction of solid PbO in deep eutectic solvent. Electrochim Acta 196:56–66. doi:10.1016/j.electacta.2016.02.181

    Article  CAS  Google Scholar 

  30. Xie XL, Zou XL, Lu XG, Lu CY, Cheng HW, Xu Q, Zhou ZF (2016) Electrodeposition of Zn and Cu–Zn alloy from ZnO/CuO precursors in deep eutectic solvent. Appl Surf Sci 385:481–489. doi:10.1016/j.apsusc.2016.05.138

    Article  CAS  Google Scholar 

  31. Xie XL, Zou XL, Lu XG, Zheng K, Cheng HW, Xu Q, Zhou ZF (2016) Voltammetric study and electrodeposition of Cu from CuO in deep eutectic solvents. J Electrochem Soc 163:D537–D543. doi:10.1149/2.1241609jes

    Article  CAS  Google Scholar 

  32. Prathish KP, Carvalho RC, Brett CMA (2014) Highly sensitive poly(3,4-ethylenedioxythiophene) modified electrodes by electropolymerisation in deep eutectic solvents. Electrochem Commun 44:8–11. doi:10.1016/j.elecom.2014.03.026

    Article  CAS  Google Scholar 

  33. Chu QW, Liang J, Hao JC (2014) Electrodeposition of zinc-cobalt alloys from choline chloride–urea ionic liquid. Electrochim Acta 115:499–503. doi:10.1016/j.electacta.2013.10.204

    Article  CAS  Google Scholar 

  34. Yang HY, Guo XW, Chen XB, Wang SH, Wu GH, Ding WJ, Birbilis N (2012) On the electrodeposition of nickel–zinc alloys from a eutectic-based ionic liquid. Electrochim Acta 63:131–138. doi:10.1016/j.electacta.2011.12.070

    Article  CAS  Google Scholar 

  35. Li RQ, Chu QW, Liang J (2015) Electrodeposition and characterization of Ni–SiC composite coatings from deep eutectic solvent. RSC Adv 5:44933–44942. doi:10.1039/c5ra05918f

    Article  CAS  Google Scholar 

  36. Scharifker B, Hills G (1983) Theoretical and experimental studies of multiple nucleation. Electrochim Acta 28:879–889. doi:10.1016/0013-4686(83)85163-9

    Article  CAS  Google Scholar 

  37. Abbott AP, Barron JC, Frisch G, Gurman S, Ryder KS, Silva AF (2011) Double layer effects on metal nucleation in deep eutectic solvents. Phys Chem Chem Phys 13:10224–10231. doi:10.1039/c0cp02244f

    Article  CAS  Google Scholar 

  38. Lin YP, Selman JR (1993) Electrodeposition of Ni–Zn alloy: II. Electrocrystallization of Zn, Ni, and Ni–Zn alloy. J Electrochem Soc 140:1304–1311. doi:10.1149/1.2220975

    Article  CAS  Google Scholar 

  39. Haerens K, Matthijs E, Binnemans K, Bruggen BV (2009) Electrochemical decomposition of choline chloride based ionic liquid analogues. Green Chem 11:1357–1365. doi:10.1039/b906318h

    Article  CAS  Google Scholar 

  40. Sun HJ, Yu LP, Jin XB, Hu XH, Wang DH, Chen GZ (2005) Unusual anodic behaviour of chloride ion in 1-butyl-3-methylimidazolium hexafluorophosphate. Electrochem Commun 7:685–691. doi:10.1016/j.elecom.2005.04.020

    Article  CAS  Google Scholar 

  41. Juškėnas R, Karpavičienė V, Pakštas V, Selskis A, Kapočius V (2007) Electrochemical and XRD studies of Cu–Zn coatings electrodeposited in solution with D-mannitol. J Electroanal Chem 602:237–244. doi:10.1016/j.jelechem.2007.01.004

    Article  Google Scholar 

  42. Langford JI, Wilson AJC (1978) Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Cryst 11:102–113. doi:10.1107/S0021889878012844

    Article  CAS  Google Scholar 

  43. Beattie SD, Dahn JR (2003) Comparison of electrodeposited copper-zinc alloys prepared individually and combinatorially. J Electrochem Soc 150:C802–C806. doi:10.1149/1.1615998

    Article  CAS  Google Scholar 

  44. Chaaya AA, Viter R, Bechelany M, Alute Z, Erts D, Zalesskaya A, Kovalevskis K, Rouessac V, Smyntyna V, Miele P (2013) Evolution of microstructure and related optical properties of ZnO grown by atomic layer deposition. Beilstein J Nanotechnol 4:690–698. doi:10.3762/bjnano.4.78

    Article  Google Scholar 

  45. Guo L, Searson PC (2010) On the influence of the nucleation overpotential on island growth in electrodeposition. Electrochim Acta 55:4086–4091. doi:10.1016/j.electacta.2010.02.038

    Article  CAS  Google Scholar 

  46. Vreese PD, Skoczylas A, Matthijs E, Fransaer J, Binnemans K (2013) Electrodeposition of copper–zinc alloys from an ionic liquid-like choline acetate electrolyte. Electrochim Acta 108:788–794. doi:10.1016/j.electacta.2013.06.140

    Article  Google Scholar 

  47. Karahan IH, Ö zdemir R (2014) Effect of Cu concentration on the formation of Cu1−x Zn x shape memory alloy thin films. Appl Surf Sci 318:100–104. doi:10.1016/j.apsusc.2014.01.119

    Article  CAS  Google Scholar 

  48. Zhang JL, Gu CD, Fashu S, Tong YY, Huang ML, Wang XL, Tu JP (2015) Enhanced corrosion resistance of Co-Sn alloy coating with a self-organized layered structure electrodeposited from deep eutectic solvent. J Electrochem Soc 162:D1–D8. doi:10.1149/2.0231501jes

    Article  CAS  Google Scholar 

  49. Wang SG, Shen CB, Long K, Yang HY, Wang FH, Zhang ZD (2005) Preparation and electrochemical corrosion behavior of bulk nanocrystalline ingot iron in HCl acid solution. J Phys Chem B 109:2499–2503. doi:10.1021/jp046297v

    Article  CAS  Google Scholar 

  50. Mountassir Z, Srhiri A (2007) Electrochemical behaviour of Cu–40Zn in 3% NaCl solution polluted by sulphides: effect of aminotriazole. Corros Sci 49:1350–1361. doi:10.1016/j.corsci.2006.07.001

    Article  CAS  Google Scholar 

  51. Chang LM, Chen D, Liu JH, Zhang RJ (2009) Effects of different plating modes on microstructure and corrosion resistance of Zn–Ni alloy coatings. J Alloys Compd 479:489–493. doi:10.1016/j.jallcom.2008.12.108

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank China National Funds for Distinguished Young Scientists (No. 51225401), the National Natural Science Foundation of China (Nos. 51574164, 51304132 and 51664005), the National Basic Research Program of China (No. 2014CB643403), the Science and Technology Commissions of Shanghai Municipality (No. 14JC1491400) and the Young Teacher Training Program of Shanghai Municipal Education Commission for financial support. We also thank the Instrumental Analysis and Research Center of Shanghai University for materials characterization.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xingli Zou or Xionggang Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, X., Zou, X., Lu, X. et al. Electrodeposition behavior and characterization of copper–zinc alloy in deep eutectic solvent. J Appl Electrochem 47, 679–689 (2017). https://doi.org/10.1007/s10800-017-1069-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-017-1069-y

Keywords

Navigation