Journal of Applied Electrochemistry

, Volume 47, Issue 5, pp 593–605 | Cite as

Electroactive nanofluids with high solid loading and low viscosity for rechargeable redox flow batteries

  • Sujat Sen
  • Chun-Man Chow
  • Elahe Moazzen
  • Carlo U. Segre
  • Elena V. TimofeevaEmail author
Research Article


A typical dispersion of iron oxide nanoparticles in alkali electrolyte is limited to 20 wt% solids, above which it has a paste-like consistency (>370 cP), incompatible with flow applications. The formulation of stable electrochemically active colloids of nanoscale iron oxide (30–50 nm) with up to 70 wt% solids, low viscosity (<30 cP) with minimal shear dependence (±2 cP), excellent colloidal stability (>2 weeks at rest), and 55% enhancement in thermal conductivity is reported herein. A thin surface coating allows for good particle dispersion, which is shown to be crucial for these enhanced features. These suspensions of electrochemically active nanoparticles (nanoelectrofuels) can undergo electrochemical charge and discharge in fluidized format through particle–electrode impact events with potential for application in redox flow batteries. The surface coating is found to partially suppress electrochemical access to the nanoparticle in a fluidized format but has no detrimental effects on discharge capacity in the solid state. This approach is also shown to suppress a parasitic nanoparticle agglomeration process, which is otherwise dominant during electrochemical cycling of pristine iron oxide. A dissolution re-precipitation mechanism is proposed to offer insight into this auxiliary benefit. This study provides the first insight into the feasibility of adopting electrochemically active nanofluids as high energy density redox flow battery electrolytes.

Graphical Abstract


Nanofluid Iron oxide Flow battery Nanoelectrofuels Particle–electrode impact 



The project is supported by US Department of Energy, Advanced Research Funding Agency-Energy (ARPA-E) Grant No. AR0000387. Use of the Argonne National Laboratory, Electron Microscopy Center, and Center for Nanoscale Materials is supported by the U.S. Department of Energy, under Contract No. DE-AC02-06CH11357.

Supplementary material

10800_2017_1063_MOESM1_ESM.docx (1.8 mb)
Supplementary material 1 (DOCX 1799 KB)


  1. 1.
    Choi SUS (2009) Nanofluids: from vision to reality through research. J Heat Transfer 131:033106–033106CrossRefGoogle Scholar
  2. 2.
    Zhang J-X, Zheng Y-P, Lan L, Mo S, Yu P-Y, Shi W, Wang R-M (2009) Direct synthesis of solvent-free multiwall carbon nanotubes/silica nonionic nanofluid hybrid material. ACS Nano 3:2185–2190CrossRefGoogle Scholar
  3. 3.
    Raja M, Vijayan R, Dineshkumar P, Venkatesan M (2016) Review on nanofluids characterization, heat transfer characteristics and applications. Renew Sustain Energy Rev 64:163–173CrossRefGoogle Scholar
  4. 4.
    Eggers JR, Kabelac S (2016) Nanofluids revisited. Appl Therm Eng 106:1114–1126CrossRefGoogle Scholar
  5. 5.
    Wong KV, De Leon O, (2010) Applications of nanofluids: current and future. Adv Mech Eng. doi:  10.1155/2010/519659 Google Scholar
  6. 6.
    Paul G, Pal T, Manna I (2010) Thermo-physical property measurement of nano-gold dispersed water based nanofluids prepared by chemical precipitation technique. J Colloid Interface Sci 349:434–437CrossRefGoogle Scholar
  7. 7.
    Paul G, Das PK, Manna I (2016) Synthesis characterization and studies on magneto-viscous properties of magnetite dispersed water based nanofluids. J Magn Magn Mater 404:29–39CrossRefGoogle Scholar
  8. 8.
    Paul G, Das PK, Manna I (2015) Rewetting of vertical pipes by bottom flooding using nanofluid as a coolant. J Heat Transfer 137:121009CrossRefGoogle Scholar
  9. 9.
    Xu Z, Kleinstreuer C (2014) Concentration photovoltaic–thermal energy co-generation system using nanofluids for cooling and heating. Energy Convers Manage 87:504–512CrossRefGoogle Scholar
  10. 10.
    Chen M, He Y, Zhu J, Wen D (2016) Investigating the collector efficiency of silver nanofluids based direct absorption solar collectors. Appl Energy 181:65–74CrossRefGoogle Scholar
  11. 11.
    Jin H, Lin G, Bai L, Amjad M, Bandarra Filho EP, Wen D (2016) Photothermal conversion efficiency of nanofluids: an experimental and numerical study. Sol Energy 139:278–289CrossRefGoogle Scholar
  12. 12.
    Naghash A, Sattari S, Rashidi A (2016) Experimental assessment of convective heat transfer coefficient enhancement of nanofluids prepared from high surface area nanoporous graphene. Int Commun Heat Mass Transfer 78:127–134CrossRefGoogle Scholar
  13. 13.
    Sadegh Hassani S, Amrollahi A, Rashidi A, Soleymani M, Rayatdoost S (2016) The effect of nanoparticles on the heat transfer properties of drilling fluids. J Petrol Sci Eng 146:183–190CrossRefGoogle Scholar
  14. 14.
    Losev AV, Petrii OA, Nauki I (1979) Suspension and fluidized electrodes. Electrokhimiya 14:120Google Scholar
  15. 15.
    Garche J, Dietz H, Wiesener K (1984) The suspension electrode technique for electrochemical analysis of lead dioxide. J Electroanal Chem Interfacial Electrochem 180:577–585CrossRefGoogle Scholar
  16. 16.
    Duduta M, Ho B, Wood VC, Limthongkul P, Brunini VE, Carter WC, Chiang Y-M (2011) Semi-solid lithium rechargeable flow battery. Adv Energy Mater 1:511–516CrossRefGoogle Scholar
  17. 17.
    Qi Z, Koenig GM Jr (2016) A carbon-free lithium-ion solid dispersion redox couple with low viscosity for redox flow batteries. J Power Sources 323:97–106CrossRefGoogle Scholar
  18. 18.
    Deepak PD, Pedro GR (2016) Electroactive graphene nanofluids for fast energy storage. 2D Mater 3:031004CrossRefGoogle Scholar
  19. 19.
    Mubeen S, Jun, Y.-s., Lee J, McFarland EW (2016) Solid suspension flow batteries using earth abundant materials. ACS Appl Mater Interfaces 8:1759–1765CrossRefGoogle Scholar
  20. 20.
    Li Z, Smith KC, Dong Y, Baram N, Fan FY, Xie J, Limthongkul P, Carter WC, Chiang Y-M (2013) Aqueous semi-solid flow cell: demonstration and analysis. Phys Chem Chem Phys 15:15833–15839CrossRefGoogle Scholar
  21. 21.
    Hatzell KB, Fan L, Beidaghi M, Boota M, Pomerantseva E, Kumbur EC, Gogotsi Y (2014) Composite manganese oxide percolating networks as a suspension electrode for an asymmetric flow capacitor. ACS Appl Mater Interfaces 6:8886–8893CrossRefGoogle Scholar
  22. 22.
    Youssry M, Madec L, Soudan P, Cerbelaud M, Guyomard D, Lestriez B (2015) Formulation of flowable anolyte for redox flow batteries: Rheo-electrical study. J Power Sources 274:424–431CrossRefGoogle Scholar
  23. 23.
    Sokolov SV, Kätelhön E, Compton RG (2016) Near-Wall Hindered Diffusion in Convective Systems: Transport Limitations in Colloidal and Nanoparticulate Systems. J Phys Chem C 120:10629–10640CrossRefGoogle Scholar
  24. 24.
    Moo JGS, Pumera M (2016) Self-propelled micromotors monitored by particle-electrode impact voltammetry. ACS Sens 1:949–957CrossRefGoogle Scholar
  25. 25.
    Rees NV, Zhou Y-G, Compton RG (2012) Making contact: charge transfer during particle-electrode collisions. RSC Adv 2:379–384CrossRefGoogle Scholar
  26. 26.
    Heyrovsky M, Jirkovsky J (1995) Polarography and voltammetry of ultrasmall colloids introduction to a new field. Langmuir 11:4288–4292CrossRefGoogle Scholar
  27. 27.
    Zhou Y-G, Rees NV, Compton RG (2012) The electrochemical detection of tagged nanoparticles via particle-electrode collisions: nanoelectroanalysis beyond immobilisation. Chem Commun (Camb) 48:2510–2512CrossRefGoogle Scholar
  28. 28.
    Filomeno CL, Marinho EP, Aquino R, Silva FGd, Dubois E, Depeyrot J, Campos AFC (2016) Electrodic reduction of core-shell ferrite magnetic nanoparticles. New J Chem 40:6405–6413CrossRefGoogle Scholar
  29. 29.
    Timofeeva EV, Katsoudas JP, Segre CU, Singh D (2013) Rechargeable Nanofluid Electrodes for High Energy Density Flow Battery. Cleantech Energy storage 9:363–366Google Scholar
  30. 30.
    Rechargeable nanoelectrofuel electrodes and devices for high energy density flow batteries. US Patent US20160126581A1, 2016Google Scholar
  31. 31.
    Weber AZ, Mench MM, Meyers JP, Ross PN, Gostick JT, Liu Q (2011) Redox flow batteries: a review. J Appl Electrochem 41:1137–1164CrossRefGoogle Scholar
  32. 32.
    Meethong N, Huang HYS, Carter WC, Chiang YM (2007) Size-dependent lithium miscibility gap in nanoscale Li1–x FePO4. Electrochem Solid-State Lett 10:A134–A138CrossRefGoogle Scholar
  33. 33.
    Casellato U, Comisso N, Mengoli G (2006) Effect of Li ions on reduction of Fe oxides in aqueous alkaline medium. Electrochim Acta 51:5669–5681CrossRefGoogle Scholar
  34. 34.
    Huo G, Lu X, Huang Y, Li W, Liang G (2014) Electrochemical performance of α-Fe2O3 particles as anode material for aqueous rechargeable batteries. J Electrochem Soc 161:A1144–A1148CrossRefGoogle Scholar
  35. 35.
    Felicia LJ, Philip J (2013) Probing of field-induced structures and tunable rheological properties of surfactant capped magnetically polarizable nanofluids. Langmuir 29:110–120CrossRefGoogle Scholar
  36. 36.
    Hong RY, Zhang SZ, Han YP, Li HZ, Ding J, Zheng Y (2006) Preparation, characterization and application of bilayer surfactant-stabilized ferrofluids. Powder Technol 170:1–11CrossRefGoogle Scholar
  37. 37.
    Vékás L, Bica D, Marinica O, Raşa M, Socoliuc V, Stoian FD (2005) Concentrated magnetic fluids on water and short chain length organic carriers. J Magn Magn Mater 289:50–53CrossRefGoogle Scholar
  38. 38.
    Khalil M, Yu J, Liu N, Lee RL (2014) Non-aqueous modification of synthesized hematite nanoparticles with oleic acid. Colloids Surf A 453:7–12CrossRefGoogle Scholar
  39. 39.
    Lazareva TG, Shinkareva EV (2003) Rheological and electrophysical properties of dispersions based on thermally treated magnetite and aqueous emulsions of water-soluble polymers in transformer oil. Russ J Appl Chem 76:1813–1816CrossRefGoogle Scholar
  40. 40.
    Harris LA, Goff JD, Carmichael AY, Riffle JS, Harburn JJ, St. Pierre TG, Saunders M (2003) Magnetite nanoparticle dispersions stabilized with triblock copolymers. Chem Mater 15:1367–1377CrossRefGoogle Scholar
  41. 41.
    Józefczak A, Hornowski T, Rozynek Z, Skumiel A, Fossum JO (2013) Rheological study of dextran-modified magnetite nanoparticle water suspension. Int J Thermophys 34:609–619CrossRefGoogle Scholar
  42. 42.
    Khosroshahi ME, Ghazanfari L (2012) Preparation and rheological studies of uncoated and PVA-coated magnetite nanofluid. J Magn Magn Mater 324:4143–4146CrossRefGoogle Scholar
  43. 43.
    Mendenhall GD, Geng Y, Hwang J (1996) Optimization of long-term stability of magnetic fluids from magnetite and synthetic polyelectrolytes. J Colloid Interface Sci 184:519–526CrossRefGoogle Scholar
  44. 44.
    Amstad E, Gillich T, Bilecka I, Textor M, Reimhult E (2009) Ultrastable iron oxide nanoparticle colloidal suspensions using dispersants with catechol-derived anchor groups. Nano Lett 9:4042–4048CrossRefGoogle Scholar
  45. 45.
    Jain N, Wang Y, Jones SK, Hawkett BS, Warr GG (2010) Optimized steric stabilization of aqueous ferrofluids and magnetic nanoparticles. Langmuir 26:4465–4472CrossRefGoogle Scholar
  46. 46.
    Sen S, Moazzen E, Aryal S, Segre CU, Timofeeva EV (2015) Engineering nanofluid electrodes: controlling rheology and electrochemical activity of γ-Fe2O3 nanoparticles. J Nanopart Res 17:1–10CrossRefGoogle Scholar
  47. 47.
    Rietveld H (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71CrossRefGoogle Scholar
  48. 48.
    Toby B (2001) EXPGUI a graphical user interface for GSAS. J Appl Crystallogr 34:210–213CrossRefGoogle Scholar
  49. 49.
    Larson AC, Dreele RBV (2000)General Structure Analysis System (GSAS), Los Alamos National Laboratory Report, LAUR 86–748Google Scholar
  50. 50.
  51. 51.
    Colla L, Fedele L, Scattolini M, Bobbo S (2012) Water-Based Fe2O3 nanofluid characterization: thermal conductivity and viscosity measurements and correlation. Adv Mech Eng. doi: 10.1155/2012/674947 Google Scholar
  52. 52.
    Hong RY, Ren ZQ, Han YP, Li HZ, Zheng Y, Ding J (2007) Rheological properties of water-based ferrofluids. Chem Eng Sci 62:5912–5924CrossRefGoogle Scholar
  53. 53.
    Ren Z, Han Y, Hong R, Ding J, Li H (2008) On the viscosity of magnetic fluid with low and moderate solid fraction. Particuology 6:191–198CrossRefGoogle Scholar
  54. 54.
    Utomo AT, Poth H, Robbins PT, Pacek AW (2012) Experimental and theoretical studies of thermal conductivity, viscosity and heat transfer coefficient of titania and alumina nanofluids. Int J Heat Mass Transfer 55:7772–7781CrossRefGoogle Scholar
  55. 55.
    Hunter RJ (2001) Foundations of colloid science. 2nd edn Oxford University Press, Inc., New YorkGoogle Scholar
  56. 56.
    Routbort J, Singh D, Timofeeva E, Yu W, France D (2011) Pumping power of nanofluids in a flowing system. J Nanopart Res 13:931–937CrossRefGoogle Scholar
  57. 57.
    Chakkaravarthy C, Periasamy P, Jegannathan S, Vasu KI (1991) The nickel/iron battery. J Power Sources 35:21–35CrossRefGoogle Scholar
  58. 58.
    Tannhauser DS (1962) Conductivity in iron oxides. J Phys Chem Solids 23:25–34CrossRefGoogle Scholar
  59. 59.
    Kim KH, Lee SH, Choi JS (1985) Electrical conductivity of pure and doped α-ferric oxides. J Phys Chem Solids 46:331–338CrossRefGoogle Scholar
  60. 60.
    Posada, JOG, Hall PJ (2016) Controlling hydrogen evolution on iron electrodes. Int J Hydrogen Energy 41:20807–20817CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Energy Systems DivisionArgonne National LaboratoryLemontUSA
  2. 2.Department of ChemistryIllinois Institute of TechnologyChicagoUSA
  3. 3.Department of Physics & CSRRIIllinois Institute of TechnologyChicagoUSA

Personalised recommendations