Journal of Applied Electrochemistry

, Volume 47, Issue 4, pp 457–466 | Cite as

Enhanced plasmon-mediated photo-assisted hydrogen evolution on silicon by interfacial modification

Research Article

Abstract

The superior catalytic activity of Pt towards proton reduction suggests application of Pt also in device architectures where hydrogen is produced by light-generated charge carriers. Large optical absorption cross sections of Pt nanoparticles, however, turn the attention to potential substitutes for Pt such as Au with more advantageous optical properties. In order to approach a functional Si/Au photocathode for hydrogen evolution, we report here on modifications of the Si–Au interface which result in improvements of charge transfer kinetics and optical properties of the device. After current-less deposition of Au nanoparticles onto silicon, these improvements are realized by chemical oxide exchange reactions at the Si/SiO2/Au interface, i.e., dynamic etching of SiO2 and re-oxidation of Si in NH4F (40%). A chemical reaction route for the reformation of the SiO2 layer in the presence of Au and the aqueous NH4F solution is discussed. Simultaneous to the modification of the Si/SiO2 interface, small Au nanoparticles form larger clusters with enhanced effective scattering cross sections. Thereby, improved electronic interface properties and enhanced forward scattering of light increase the saturation photocurrent density by about 9% from 32 to 35 mA cm−2. Improved stability of the device in acidic electrolytes, near the thermodynamic potential for evolution of hydrogen, is furthermore discussed.

Graphical Abstract

Enhanced photo-induced evolution of hydrogen at Si/SiO2/Au.

Keywords

Hydrogen evolution on silicon electrodes Si/Au interface engineering Fermi-level pinning Au nanoparticles Localized surface plasmon excitation 

References

  1. 1.
    Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS (2010) Solar Water Splitting Cells. Chem Rev 110:6446–6473CrossRefGoogle Scholar
  2. 2.
    Pijpers JJH, Winkler MT, Surendranatha Y, Buonassisi T, Nocera DG (2011) Light-induced water oxidation at silicon electrodes functionalized with a cobalt oxygen-evolving catalyst. PNAS 108:10056–10061CrossRefGoogle Scholar
  3. 3.
    Esposito DV, Levin I, Moffat TP, Talin AA (2013) H2 evolution at Si-based metal-insulator-semiconductor photoelectrodes enhanced by inversion channel charge collection and H spillover. Nat Mater 12:562–568CrossRefGoogle Scholar
  4. 4.
    Chen Y, Prange JD, Dühnen S, Park Y, Gunji M, Chidsey CED, McIntyre PC (2011) Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation. Nat Mater 10:539–544CrossRefGoogle Scholar
  5. 5.
    Sun K, Park N, Sun Z, Zhou J, Wang J, Pang X, Shen S, Noh SY, Jing Y, Jin S, Yu PKL, Wang D (2012) Nickel oxide functionalized silicon for efficient photo-oxidation of water. Energy. Environ Sci 5:7872–7877Google Scholar
  6. 6.
    Hu S, Shaner MR, Beardslee JA, Lichterman M, Brunschwig BS, Lewis NS (2014) Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 344:1005–1009CrossRefGoogle Scholar
  7. 7.
    Bolts JM, Bocarsly AB, Palazzotto MC, Walton EG, Lewis NS, Wrighton MS (1979) Chemically derivatized n-type silicon photoelectrodes: stabilization to surface corrosion in aqueous electrolyte solutions and mediation of oxidation reactions by surface-attached electroactive ferrocene reagents. J Am Chem Soc 101:1378–1385CrossRefGoogle Scholar
  8. 8.
    Fan FRF, Hope GA, Bard AJ (1982) Semiconductor electrodes XLVI. Stabilization of n-silicon electrodes in aqueous solution photoelectrochemical cells by formation of platinum silicide layers. J Electrochem Soc 129:1647–1649CrossRefGoogle Scholar
  9. 9.
    Boettcher SW, Warren EL, Putnam MC, Santori EA, Turner-Evans D, Kelzenberg MD, Walter MG, McKone JR, Brunschwig BS, Atwater HA, Lewis NS (2011) Photoelectrochemical hydrogen evolution using Si microwire arrays. J Am Chem Soc 133:1216–1219CrossRefGoogle Scholar
  10. 10.
    Christophersen M, Carstensen J, Rönnebeck S, Jäger C, Jäger W, Föll H (2001) Crystal orientation dependence and anisotropic properties of macropore formation of p- and n-type silicon. J Electrochem Soc 148:E267-E275 and references hereinGoogle Scholar
  11. 11.
    Seger B B, Pedersen T T, Laursen AB AB, Vesborg PCK, Hansen O, Chorkendorff I (2013) Using TiO2 as a conductive protective layer for photocathodic H2 evolution. J Am Chem Soc 135:1057–1064CrossRefGoogle Scholar
  12. 12.
    Li S, Zhang P, Song X, Gao L (2015) Photoelectrochemical hydrogen production of TiO2 passivated Pt/Si-nanowire composite photocathode. ACS Appl Mater Interfaces 7:18560–18565CrossRefGoogle Scholar
  13. 13.
    Lublow M, Bouabadi B, Kubala S (2012) Au-Pt core-shell nanoemitters on silicon for photoelectrochemical solar energy conversion. Sol Energ Mat Sol 107:56–62CrossRefGoogle Scholar
  14. 14.
    Norskov JK, Bligaard T, Logadottir A, Kitchin JR, Chen JG, Pandelov S, Stimming U (2005) Trends in the exchange current for hydrogen evolution. J Electrochem Soc 152:J23-J26 (2005).Google Scholar
  15. 15.
    Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213CrossRefGoogle Scholar
  16. 16.
    Thimsen E, Le Formal F, Grätzel M, Warren SC (2011) Influence of plasmonic Au nanoparticles on the photoactivity of Fe2O3 electrodes for water splitting. Nano Lett 11:35–43CrossRefGoogle Scholar
  17. 17.
    Seo D, Park G, Song H (2012) Plasmonic monitoring of catalytic hydrogen generation by a single nanoparticle probe. J Am Chem Soc 134:1221–1227CrossRefGoogle Scholar
  18. 18.
    Tanaka A, Sakaguchi S, Hashimoto K, Kominami H (2013) Preparation of Au/TiO2 with metal cocatalysts exhibiting strong surface plasmon resonance effective for photoinduced hydrogen formation under irradiation of visible light. ACS Catal 3:79–85CrossRefGoogle Scholar
  19. 19.
    Lublow M, Lewerenz HJ (2007) Combined AFM and Brewster-angle analysis of gradually etched ultrathin SiO2—comparison with SRPES results. Surf Sci 601:1693–1700CrossRefGoogle Scholar
  20. 20.
    Nakato Y, Yano H, Nishiura S, Ueda T, Tsubomura H (1987) Hydrogen photoevolution at p-type silicon electrodes coated with discontinuous metal layers. J Electroanal Chem 228:97–108CrossRefGoogle Scholar
  21. 21.
    Lublow M, Lewerenz HJ (2007) Brewster-angle analysis of native and photoelectrochemically grown silicon oxide nanotopographies. Surf Sci 601:4227–4231CrossRefGoogle Scholar
  22. 22.
    Allongue P, Costa-Kieling V, Gerischer H (1993) Etching of silicon in NaOH solutions: I. In situ scanning tunneling microscopic investigation of n-Si(111). J Electrochem Soc 140:1009–1018CrossRefGoogle Scholar
  23. 23.
    Allongue P, Costa-Kieling V, Gerischer H (1993) Etching of silicon in NaOH solutions: II. Electrochemical studies of n-Si(111) and (100) and mechanism of the dissolution. J Electrochem Soc 140:1018–1026CrossRefGoogle Scholar
  24. 24.
    Allongue P, Kieling V, Gerischer H (1995) Etching mechanism and atomic structure of H-Si(111) surfaces prepared in NH4F. Electrochim Acta 40:1353–1360 (1995)CrossRefGoogle Scholar
  25. 25.
    Allongue P, de Villeneuve CH, Morin S, Boukherroub R, Wayner DDM (2000) The preparation of flat H-Si(111) surfaces in 40% NH4F revisited. Electrochim Acta 45:4591–4598CrossRefGoogle Scholar
  26. 26.
    Bohren CF, Huffman DR (1983) Scattering of light by small particles, Wiley, New YorkGoogle Scholar
  27. 27.
    Kreibig U U, Vollmer M M (1995) Optical properties of metal clusters. Springer series in materials science 25. Springer, BerlinCrossRefGoogle Scholar
  28. 28.
    Lublow M, Lu Y, Wu S (2012) Brewster-angle variable polarization spectroscopy of colloidal Au-nanospheres and -nanorods at the silicon surface. J Phys Chem C 116:8079–8088CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • B. Bouabadi
    • 1
  • M. Aggour
    • 1
  • H.-J. Lewerenz
    • 2
  • M. Lublow
    • 3
  1. 1.Department of PhysicsIbn Tofail UniversityKenitraMorocco
  2. 2.Joint Center for Artificial PhotosynthesisCalifornia Institute of TechnologyPasadenaUSA
  3. 3.Institute of ChemistryTechnical University BerlinBerlinGermany

Personalised recommendations