Advertisement

Journal of Applied Electrochemistry

, Volume 47, Issue 2, pp 197–203 | Cite as

Systematic studies of TiO2-based photocatalysts anti-algal effects on Chlorella vulgaris

  • Norihiro SuzukiEmail author
  • Takuo Sanada
  • Chiaki Terashima
  • Tomonori Suzuki
  • Tadao Arai
  • Satoshi Saitou
  • Tetsufumi Kawashima
  • Atsushi Mizutani
  • Toshio Saitou
  • Kazuya Nakata
  • Ken-ichi Katsumata
  • Takeshi Kondo
  • Makoto Yuasa
  • Akira Fujishima
Research Article
Part of the following topical collections:
  1. Solar Cells

Abstract

In this study, the validity of TiO2-based photocatalysts anti-algal effects was examined with Chlorella vulgaris. Cu-modified TiO2 (without N dopants) showed clear anti-algal effect under white LED light. N-doped TiO2 (both with and without Cu modification) and Cu-modified TiO2 (without N dopants) showed clear anti-algal effects when UV light was used together with white LED light. S-doped TiO2 had no anti-algal effects and even promoted the growth of algae. The degree of the anti-algal effect differed depending on the dopants, surface modifications, and irradiation light. Photocatalysts create several active spices during their photocatalytic processes. Of these, the effects of superoxide radical (O 2 ·− ) and hydrogen peroxide (H2O2) on algae growth were examined. Photocatalysts with high anti-algal effect produced hydrogen peroxides effectively, while there was no correlation between productivity of superoxide radical and anti-algal effects. Thus, the ability to produce hydrogen peroxide is a plausible factor for determining the efficiency of the anti-algal effect of a photocatalysts.

Graphical Abstract

Keywords

Titanium dioxide Photocatalyst Anti-algal effect Hydrogen peroxide 

Notes

Acknowledgements

This work was partially supported by the Strategic International Collaborative Research Program (SICORP) of the Japan Science and Technology Agency (JST).

Supplementary material

10800_2016_1031_MOESM1_ESM.docx (3.2 mb)
Supplementary material 1 (DOCX 3270 kb)

References

  1. 1.
    Asao T, Kitazawa H, Ban T, Pramanik MHR, Matsui Y, Hosoki T (2004) Search of autotoxic substances in some leaf vegetables. J Jpn Soc Hortic Sci 73:247–249. doi: 10.2503/jjshs.73.247 CrossRefGoogle Scholar
  2. 2.
    Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38. doi: 10.1038/238037a0 CrossRefGoogle Scholar
  3. 3.
    Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582. doi: 10.1016/j.surfrep.2008.10.001 CrossRefGoogle Scholar
  4. 4.
    Miyama Y, Sunada K, Fujikawa S, Hashimoto K (2009) Photocatalytic treatment of waste nutrient solution from soil-less cultivation of tomatoes planted in rice hull substrate. Plant Soil 318:275–283. doi: 10.1007/s11104-008-9837-4 CrossRefGoogle Scholar
  5. 5.
    Tajima M, Fukuda K, Komatsubara S (2014) Japan patent, P5419029 (in Japanese)Google Scholar
  6. 6.
    Peller JR, Whitman RL, Griffith S, Harris P, Peller C, Scalzitti J (2007) TiO2 as a photocatalyst for control of the aquatic invasive alga, Clodophora, under natural and artificial light. J Photochem Photobiol A Chem 186:212–217. doi: 10.1016/j.photochem.2006.08.009 CrossRefGoogle Scholar
  7. 7.
    Shin H-J, Kim B-H, Seo HS, Kim CS, Kook J-K, Lim G-T, Cho D-L, Kim D, Ohk SH, Ko Y-M (2009) Degradation of Cochlodinium polykrikoides using photocatalytic reactor with TiO2-coated alumina. Biotechnol Bioprocess Eng 14:531–535. doi: 10.1007/s12257-009-0048-5 CrossRefGoogle Scholar
  8. 8.
    Ochiai T, Fukuda T, Nakata K, Murakami T, Tryk DA, Koide Y, Fujishima A (2010) Photocatalytic inactivation and removal of algae with TiO2-coated materials. J Appl Electrochem 40:1737–1742. doi: 10.1007/s10800-010-0133-7 CrossRefGoogle Scholar
  9. 9.
    Metzler DM, Li M, Erdem A, Huang CP (2011) Responses of algae to photocatalytic nano-TiO2 particles with an emphasis on the effect of particle size. Chem Eng J 170:538–546. doi: 10.1016/j.cej.2011.02.002 CrossRefGoogle Scholar
  10. 10.
    Gu N, Gao J, Wang K, Yang X, Dong W (2015) ZnO-montmorillonite as photocatalyst and flocculant for inhibition of cyanobacterial bloom. Water Air Soil Pollut 226:136. doi: 10.1007/s11270-015-2407-5 CrossRefGoogle Scholar
  11. 11.
    Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O’Shea K, Entezari MH, Dionysiou DD (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ 125:331–349. doi: 10.1016/j.apcatb.2012.05.036 CrossRefGoogle Scholar
  12. 12.
    Details of this microbial culture is described in the following web site. http://mcc.nies.go.jp/02medium-e.html#c
  13. 13.
    Ukeda H (2004) Detection of superoxide anion with WST-1 and its application. Dojin News 112:1–8 (in Japanese) Google Scholar
  14. 14.
    Oritani T, Fukuhara N, Okajima T, Kitamura F, Ohsaka T (2004) Electrochemical and spectroscopic studies on electron-transfer reaction between novel water-soluble tetrazolium salts and a superoxide ion. Inorg Chim Acta 357:436–442. doi: 10.1016/j.ica.2003.05.007 CrossRefGoogle Scholar
  15. 15.
    Imase M, Ohko Y, Takeuchi M, Hanada S (2013) Estimating the viability of Chlorella exposed to oxidative stresses based around photocatalysis. Int Biodeterior Biodegrad 78:1–6. doi: 10.1016/j.ibiod.2012.12.006 CrossRefGoogle Scholar
  16. 16.
    Hirakawa T, Nosaka Y (2008) Selective production of superoxide ions and hydrogen peroxide over nitrogen- and sulfur-doped TiO2 photocatalysts with visible light in aqueous suspension systems. J Phys Chem C 112:15818–15823. doi: 10.1021/jp8055015 CrossRefGoogle Scholar
  17. 17.
    Hirakawa T, Nosaka Y (2002) Properties of O2·− and OH· formed in TiO2 aqueous suspensions by photocatalytic reaction and the influence of H2O2 and some ions. Langmuir 18:3247–3254. doi: 10.1021/la015685a CrossRefGoogle Scholar
  18. 18.
    Liu M, Qiu X, Miyauchi M, Hashimoto K (2011) Cu(II) oxide amorphous nanoclusters grafted Ti3+ self-doped TiO2: an efficient visible light photocatalyst. Chem Mater 23:5282–5286. doi: 10.1021/cm203025b CrossRefGoogle Scholar
  19. 19.
    Yamanaka K, Morikawa T (2012) Charge-carrier dynamics in nitrogen-doped TiO2 powder studied by femtosecond time-resolved diffuse reflectance spectroscopy. J Phys Chem C 116:1286–1292. doi: 10.1021/jp209210u CrossRefGoogle Scholar
  20. 20.
    Morikawa T, Irokawa Y, Ohwaki T (2006) Enhanced photocatalytic activity of TiO2−xNx loaded with copper ions under visible light irradiation. Appl Catal A 314:123–127. doi: 10.1016/j.apcata.2006.08.011 CrossRefGoogle Scholar
  21. 21.
    Yamanaka K, Ohwaki T, Morikawa T (2013) Charge-carrier dynamics in Cu- or Fe-loaded nitrogen-doped TiO2 powder studied by femtosecond diffuse reflectance spectroscopy. J Phys Chem C 117:16448–16456. doi: 10.1021/jp404431z CrossRefGoogle Scholar
  22. 22.
    Mallick N (2004) Copper-induced oxidative stress in the chlorophycean microalga Chlorella vulgaris: response of the antioxidant system. J Plant Physiol 161:591–597. doi: 10.1078/0176-1617-01230 CrossRefGoogle Scholar
  23. 23.
    Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14. doi: 10.1007/s00425-003-1105-5 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Norihiro Suzuki
    • 1
    Email author
  • Takuo Sanada
    • 1
    • 2
  • Chiaki Terashima
    • 1
  • Tomonori Suzuki
    • 1
    • 2
  • Tadao Arai
    • 1
  • Satoshi Saitou
    • 3
  • Tetsufumi Kawashima
    • 4
  • Atsushi Mizutani
    • 4
  • Toshio Saitou
    • 3
  • Kazuya Nakata
    • 1
    • 2
  • Ken-ichi Katsumata
    • 1
  • Takeshi Kondo
    • 1
    • 2
  • Makoto Yuasa
    • 1
    • 2
  • Akira Fujishima
    • 1
  1. 1.Photocatalysis International Research Center, Research Institute for Science and TechnologyTokyo University of ScienceNodaJapan
  2. 2.Faculty of Science and TechnologyTokyo University of ScienceNodaJapan
  3. 3.Takenaka Research and Development InstituteTakenaka CorporationInzaiJapan
  4. 4.Environmental Engineering DepartmentTakenaka CorporationKotoJapan

Personalised recommendations