Journal of Applied Electrochemistry

, Volume 47, Issue 2, pp 273–280 | Cite as

Development of a novel hybrid biofuel cell type APAP/O2 based on a fungal bioanode with a Scedosporium dehoogii biofilm

  • Serge Foukmeniok Mbokou
  • Ignas Kenfack Tonle
  • Maxime PontiéEmail author
Short Communication
Part of the following topical collections:
  1. Biofuel cells


A fungal biofilm has been successfully elaborated in a microbial fuel cell (MFC) device for the first time as a carbon felt colonized by a filamentous fungus denoted Scedosporium dehoogii. The elaborated biofilm was then used as bioanode in an APAP/O2 novel hybrid microbial fuel cell. The cathode was a carbon felt modified with poly-Ni(II)-tetrasulfonated phthalocyanine (poly-NiTSPc) replacing advantageously the classical Pt/Air cathode. The fabricated MFC showed APAP as an efficient model fuel organic micropollutant for this novel MFC, with highly stable output performances offering a power density at 6.5 mW m−2 under an EMF +450 mV under physiological conditions.

Graphical Abstract


APAP Microbial fuel cell Scedosporium dehoogii Fungal biofilm Carbon paste electrode Bioanode 





Carbon felt


Carbon paste electrode


Electromotive force


Field emission gun scanning electron microscopy


Microbial fuel cell


N-acetyl-parabenzoquinone imine


Phosphate buffer solution


Electrodeposited film of Ni(II)-tetrasulfonated phthalocyanine


Saturated calomel electrode


Squarewave voltammetry


Total organic carbon



The authors wish to thank R. Mallet for recording the SEM images in the microscopic department of Angers University (France). They also thank the University of Angers (France) for funds allocated to Serge FOUKMENIOK MBOKOU for a scientific stay of 4 months in France in 2014 (Angers university ARIANES’ 2014 Program) and for funds allocated to the pedagogical trip of Prof. M. PONTIÉ to Dschang, Cameroon, in 2015 (Angers university ARIANES’ 2015 Program). They thank a lot J-P. BOUCHARA and B. RAZAFIMANDIMBY for furnishing the fungus strain of S. dehoogii. They also thank a lot Prof. J-P. BOUCHARA, University of Angers (France), for fruitful discussions.


  1. 1.
    Basha S, Keane D, Nolan K, Oelgemöller M, Lawler J, Tobin JM, Morrissey A (2015) UV-induced photocatalytic degradation of aqueous acetaminophen: the role of adsorption and reaction kinetics. Environ Sci Pollut Res 22:2219–2230CrossRefGoogle Scholar
  2. 2.
    Marchlewicz A, Guzik U, Wojcieszyńska D (2015) Over-the-counter monocyclic non-steroidal anti-inflammatory drugs in environment-sources, risks, biodegradation. Water Air Soil Pollut 226:348–355CrossRefGoogle Scholar
  3. 3.
    Philips PJ, Smith SG, Koplin DW, Zaugg SD, Buxton HT, Furlong ET, Esposito K, Stinson B (2010) Pharmaceutical formulation facilities as sources of opioids and other pharmaceuticals to wastewater treatment plant effluents. Environ Sci Technol 44:4910–4916CrossRefGoogle Scholar
  4. 4.
    Escher BI, Baumgartner R, Koller M, Treyer K, Lienert J, Mc Ardell CS (2011) Environmental toxicology and risk assessment of pharmaceuticals from hospital wastewater. Water Res 45:75–92CrossRefGoogle Scholar
  5. 5.
    Tajik S, Taher MA, Beitollahi H (2014) Application of a new ferrocene-derivative modified-graphene paste electrode for simultaneous determination of isoproterenol, acetaminophen and theophylline. Sens Act B 197:228–236CrossRefGoogle Scholar
  6. 6.
    Kumary VA, Divya J, Mary Nancy TE, Sreevalsan K (2013) Voltammetric detection of paracetamol at cobalt ferrite nanoparticles modified glassy carbon electrode. Int J Electrochem Sci 8:6610–6619Google Scholar
  7. 7.
    Mazloum-Ardakani M, Sabaghian F, Khoshroo A, Abolhasani M, Naeimi H (2015) Electrochemical determination of captopril in the presence of acetaminophen, tryptophan, folic acid, and l-cysteine at the surface of modified carbon nanotube paste electrode. Ionics 21:239–250CrossRefGoogle Scholar
  8. 8.
    Bannwarth B (2006) Acetaminophen or NSAIDs for the treatment of osteoarthritis. Res Clin Rheumatol 20:117–129Google Scholar
  9. 9.
    Yoon Y, Ryu J, Oh J, Choi BG, Snyder SA (2010) Occurrence of endocrine disrupting compounds, pharmaceuticals, and personal care products in the Han River (Seoul, South Korea). Sci Total Environ 408:636–646CrossRefGoogle Scholar
  10. 10.
    Benotti MJ, Trenholm RA, Vanderford BJ, Holady JC, Stanford BD, Snyder SA (2008) Pharmaceuticals and endocrine disrupting compounds in U.S. drinking water. Environ Sci Technol 43:597–603CrossRefGoogle Scholar
  11. 11.
    Ternes TA (1998) Occurrence of drugs in German sewage treatment plants and rivers. Water Res 32:3245–3260CrossRefGoogle Scholar
  12. 12.
    Westerhoff P, Yoon Y, Snyder S, Wert E (2005) Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environ Sci Technol 39:6649–6663CrossRefGoogle Scholar
  13. 13.
    Waterston K, Weijun Wang J, Bejan D, Bunce NJ (2006) Electrochemical waste water treatment: electrooxidation of acetaminophen. J Appl Electrochem 36:227–232CrossRefGoogle Scholar
  14. 14.
    Kim SD, Cho J, Kim IS, Vanderford BJ, Snyder SA (2007) Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Res 41:1013–1021CrossRefGoogle Scholar
  15. 15.
    Wu S, Zhang L, Chen J (2012) Paracetamol in the environment and its degradation by microorganism. Appl Microbiol Biotechnol 96:875–884CrossRefGoogle Scholar
  16. 16.
    Logan BE, Rabaey K (2012) Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337:686–690CrossRefGoogle Scholar
  17. 17.
    Heidrich ES, Edwards SR, Dolfing J, Cotterill SE, Curtis TP (2014) Performance of a pilot scale microbial electrolysis cell fed on domestic wastewater at ambient temperatures for a 12 month period. Biores Technol 173:87–95CrossRefGoogle Scholar
  18. 18.
    Willner I (2002) Biomaterials for sensors, fuel cells, and circuitry. Science 298:2407–2408CrossRefGoogle Scholar
  19. 19.
    Ivanov I, Vidaković-Koch T, Sundmacher K (2010) Recent advances in enzymatic fuel cells: experiments and modeling. Energies 3:803–846CrossRefGoogle Scholar
  20. 20.
    Wang M, Yan Z, Huang B, Zhao J, Liu R (2013) Electricity generation by microbial fuel cells fuelled with Enteromorpha prolifera hydrolysis. Int J Electrochem Sci 8:2104–2111Google Scholar
  21. 21.
    Clauben M, Schmidt S (1998) Biodegradation of phenol and p-cresol by the hyphomycete Scedosporium apiospermum. Res Microbiol 149:399–406CrossRefGoogle Scholar
  22. 22.
    Bond DR, Lovely DR (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69:1548–1555CrossRefGoogle Scholar
  23. 23.
    April MT, Abbott PS, Foght MJ, Currah RS (1998) Degradation of hydrocarbons in crude-oil by the ascomycete Pseudallescheria boydii (microascaceae). Can J Microbiol 44:270–278CrossRefGoogle Scholar
  24. 24.
    Mbokou FS, Pontié M, Razafimandimby B, Bouchara J-P, Njanja É, Tonle KI (2016) Evaluation of the degradation of acetaminophen by the filamentous fungus Scedosporium dehoogii using carbon base modified electrodes. Anal Bioanal Chem 408:5895–5903CrossRefGoogle Scholar
  25. 25.
    Cortez JK, Roilides E, Quiroz-Telles F, Meletiadis J, Antachopoulos C, Knudsen T, Buchanan W, Milanovich J, Sutton AD, Fothergill A, Rinaldi GM, Shea RY, Zaoutil T, Kottilil S, Walsh JT (2008) Infections caused by Scedosporium spp. Clin Microbiol Rev 21:157–197CrossRefGoogle Scholar
  26. 26.
    Lackner M, Guarro J (2013) Pathogenesis of Scedosporium. Curr Fungal Infect Rep 7(4):326–333CrossRefGoogle Scholar
  27. 27.
    Pontón J, Rüchel R, Clermons KV, Sullivan DJ (2000) Emerging pathogens. Med Mycol 38(1):225–236CrossRefGoogle Scholar
  28. 28.
    Lackner M, Najafzadeh MJ, Sun J, Lu Q, Sybren de Hoog G (2012) Rapid identification of Pseudallescheria and Scedosporium strains by using rolling circle amplification. Appl Environ Microbiol 78(1):126–133CrossRefGoogle Scholar
  29. 29.
    Gilgado F, Cano J, Gené J, Serena C, Guarro J (2009) Different virulence of the species of the Pseudallescheria boydii complex. Med Mycol 47(4):371–374CrossRefGoogle Scholar
  30. 30.
    Prenafeta-Boldú FX, Summerbell R, Sybren de Hoog G (2006) Fungi growing on aromatic hydrocarbons: biotechnology’s unexpected encounter with biohazard. FEMS Microbiol Rev 30(1):109–130CrossRefGoogle Scholar
  31. 31.
    Mbokou FS, Pontié M, Bouchara J-P, Tchieno MMF, Njanja E, Mogni A, Pontalier YP, Tonle KI (2016) Electroanalytical performance of a carbon paste electrode modified by coffee husks for the quantification of acetaminophen in quality control of commercialized pharmaceutical tablets. Int J Electrochem. doi: 10.1155/2016/1953278 Google Scholar
  32. 32.
    Champavert J, Ben Rejeb S, Innocent C, Pontié M (2015) Microbial fuel cell based on Ni-tetra sulfonated phthalocyanine cathode and graphene modified bioanode. J Electroanal Chem 757:270–276CrossRefGoogle Scholar
  33. 33.
    Oh SE, Kim JR, Joo JH, Logan BE (2009) Effects of applied voltages and dissolved oxygen on sustained power generation by microbial fuel cells. Water Sci Technol 60:1311–1317CrossRefGoogle Scholar
  34. 34.
    Logan B, Melers B, Rozendal R, Schroder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192CrossRefGoogle Scholar
  35. 35.
    Babaei A, Dehdashti A, Afrasiabi M (2011) Development of a method for a sensitive simultaneous determination of dopamine and paracetamol in biological samples and pharmaceutical preparations. Int J Electrochem. doi: 10.4061/2011/452629 Google Scholar
  36. 36.
    Ghoreishi MS, Behpour M, Sadeghzaded S, Golestaneb M (2011) Electrochemical determination of acetaminophen in different pharmaceutical forms with gold nanoparticles carbon paste electrode. Acta Chim Slov 58:69–74Google Scholar
  37. 37.
    Afkhamia A, Khoshsafara H, Bagherib H, Madrakiana T (2014) Facile simultaneous electrochemical determination of codeine and acetaminophen in pharmaceutical samples and biological fluids by graphene-CoFe2O4 nancomposite modified carbon paste electrode. Sens Act Chem 203:909–918CrossRefGoogle Scholar
  38. 38.
    Li Y, Chen MS (2012) The electrochemical properties of acetaminophen on bare glassy carbon electrode. Int J Electrochem Sci 7:2175–2187Google Scholar
  39. 39.
    Bosch ME, Sanchez AJR, Rojas FS, Ojeda CB (2006) Determination of paracetamol. J Pharm Biomed Anal 42(3):291–321CrossRefGoogle Scholar
  40. 40.
    Albano E, Rundgren M, Harvison PJ, Nelson SD, Moldéus P (1985) Mechanisms of N-acetyl-p-benzoquinone imine cytotoxicity. Mol Pharmacol 28(3):306–311Google Scholar
  41. 41.
    Watson VJ, Logan BE (2010) Power production in MFCs inoculated with Shewanella oneidensis MR-1 or mixed cultures. Biotechnol Bioeng 105:489–498CrossRefGoogle Scholar
  42. 42.
    Zuo Y, Xing D, Regan JM, Logan BE (2008) Isolation of the exoelectrogenic bacterium Ochrobactrum anthropi YZ-1 by using a U-tube microbial fuel cell. Appl Environ Microbiol 74:3130–3137CrossRefGoogle Scholar
  43. 43.
    Kim JR, Jung SH, Regan JM, Logan BE (2007) Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Biores Technol 98:2568–2577CrossRefGoogle Scholar
  44. 44.
    Mardiana U, Innocent C, Jarrar H, Cretin M, Buchari Gandasasmita S (2015) Electropolymerized neutral red as redox mediator for yeast fuel cell. Int J Electrochem Sci 10:8886–8898Google Scholar
  45. 45.
    Kiely PD, Call DF, Yates MD, Regan JM, Logan BE (2010) Anodic biofilms in microbial fuel cells harbor low numbers of higher-power-producing bacteria than abundant genera. Appl Microbiol Biotechnol 88:371–380CrossRefGoogle Scholar
  46. 46.
    Rezaei F, Xing D, Wagner R, Regan JM, Richard TL, Logan BE (2009) Simultaneous cellulose degradation and electricity production by Enterobacter cloacae in a microbial fuel cell. Appl Environ Microbiol 75:3673–3678CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Serge Foukmeniok Mbokou
    • 1
    • 2
  • Ignas Kenfack Tonle
    • 1
  • Maxime Pontié
    • 2
    • 3
    Email author
  1. 1.Electrochemistry and Chemistry of Materials, Department of ChemistryUniversity of DschangDschangCameroon
  2. 2.UBL Universities, Laboratory GEPEA UMR-CNRS 6144Angers UniversityAngers 1France
  3. 3.UBL Universities, Laboratory GEIHP EA 3142, Institut de Biologie en Santé, PBH-IRIS, CHUAngers UniversityAngers Cedex 9France

Personalised recommendations