Journal of Applied Electrochemistry

, Volume 47, Issue 1, pp 105–115 | Cite as

Investigation and modification of carbon buckypaper as an electrocatalyst support for oxygen reduction

  • Sheng-Yang Huang
  • Qingwen Li
  • Yuntian Zhu
  • Peter S. Fedkiw
Research Article
Part of the following topical collections:
  1. Fuel cells


The present study focused on a development of a buckypaper [a 45-µm-thick film composed of entangled Carbon nanotube (CNTs)] electrode or electrocatalyst support for oxygen reduction reaction (ORR). The surfaces of the pristine nanotubes in the buckypapers were functionalized by three well-known oxidative approaches: chemical, thermal, and electrochemical. Physical properties of the buckypapers and supported Pt electrocatalysts were characterized by thermogravimetric analysis, Raman spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy (TEM). Electrochemical oxidation created the highest defect density as indicated by Raman data. In contrast, no significant change in surface functional group was observed after thermal oxidation. The TEM images revealed the successful deposition of Pt particles onto the buckypapers (35 wt% Pt/CNT) by an impregnation-reduction method, with average particle size between 2.5 and 3.5 nm. Electrocatalytic activity of the Pt electrocatalysts toward oxygen reduction was evaluated using a rotating disk electrode. The ORR results showed Pt electrocatalysts supported on the modified buckypaper displayed substantially enhanced ORR activity in comparison to the pristine Pt/buckypaper. The highest ORR activity at 0.85 V was ~5.3 mA cm−2. Our results demonstrated that buckypaper may be a potential catalyst support for fuel cell applications.

Graphical Abstract


Buckypaper Carbon nanotube (CNT) Support Pt electrocatalyst Oxygen reduction reaction Polymer electrolyte membrane fuel cells (PEMFC) 



The authors thank Dr. Martin K. Dufficy for performing TGA measurements, Liwen Zhang, and Haotian Deng for useful discussion and suggestions, and Dr. Jan Genzer and Dr. Linyou Cao for the use of FTIR and Raman spectrometers, respectively. This work was performed in part at the Analytical Instrumentation Facility (AIF) at North Carolina State University, which is supported by the State of North Carolina and the National Science Foundation (award number ECCS-1542015). The AIF is a member of the North Carolina Research Triangle Nanotechnology Network (RTNN), a site in the National Nanotechnology Coordinated Infrastructure (NNCI).

Supplementary material

10800_2016_1023_MOESM1_ESM.docx (5.8 mb)
Synthesis of CNTs and Pt/CNT electrocatalysts and results of XRD, Raman, TEM, and CV (DOCX 5900 kb)


  1. 1.
    Lubitz W, Tumas W (2007) Hydrogen: an overview. Chem Rev 107(10):3900–3903. doi: 10.1021/cr050200z CrossRefGoogle Scholar
  2. 2.
    Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104(10):4245–4269. doi: 10.1021/cr020730k CrossRefGoogle Scholar
  3. 3.
    Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B 56(1–2):9–35. doi: 10.1016/j.apcatb.2004.06.021 CrossRefGoogle Scholar
  4. 4.
    Shao M, Sasaki K, Marinkovic NS, Zhang L, Adzic RR (2007) Synthesis and characterization of platinum monolayer oxygen-reduction electrocatalysts with Co-Pd core-shell nanoparticle supports. Electrochem Commun 9(12):2848–2853. doi: 10.1016/j.elecom.2007.10.009 CrossRefGoogle Scholar
  5. 5.
    Debe MK, Schmoeckel AK, Vernstrorn GD, Atanasoski R (2006) High voltage stability of nanostructured thin film catalysts for PEM fuel cells. J Power Sources 161(2):1002–1011. doi: 10.1016/j.jpowsour.2006.05.033 CrossRefGoogle Scholar
  6. 6.
    Wee J-H, Lee K-Y, Kim SH (2007) Fabrication methods for low-Pt-loading electrocatalysts in proton exchange membrane fuel cell systems. J Power Sources 165(2):667–677. doi: 10.1016/j.jpowsour.2006.12.051 CrossRefGoogle Scholar
  7. 7.
    Susac D, Zhu L, Teo M, Sode A, Wong KC, Wong PC, Parsons RR, Bizzotto D, Mitchell KAR, Campbell SA (2007) Characterization of FeS2-based thin films as model catalysts for the oxygen reduction reaction. J Phys Chem C 111(50):18715–18723. doi: 10.1021/jp073395i CrossRefGoogle Scholar
  8. 8.
    Huang S-Y, Ganesan P, Park S, Popov BN (2009) Development of a titanium dioxide-supported platinum catalyst with ultrahigh stability for polymer electrolyte membrane fuel cell applications. J Am Chem Soc 131(39):13898–13899. doi: 10.1021/ja904810h CrossRefGoogle Scholar
  9. 9.
    Ralph TR, Hogarth MP (2002) Catalysis for low temperature fuel cells prat I: the cathode challenges. Platin Met Rev 46(1):3–14Google Scholar
  10. 10.
    Yuan T, Kang Y, Chen J, Du C, Qiao Y, Xue X, Zou Z, Yang H (2011) Enhanced performance of a passive direct methanol fuel cell with decreased Nafion aggregate size within the anode catalytic layer. Int J Hydrogen Energy 36(16):10000–10005. doi: 10.1016/j.ijhydene.2011.05.059 CrossRefGoogle Scholar
  11. 11.
    Ferreira PJ, Shao-Horn Y, Morgan D, Makharia R, Kocha S, Gasteiger HA (2005) Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells a mechanistic investigation. J Electrochem Soc 152(11):A2256–A2271CrossRefGoogle Scholar
  12. 12.
    Huang S-Y, Ganesan P, Popov BN (2012) Electrocatalytic activity and stability of titania-supported platinum-palladium electrocatalysts for polymer electrolyte membrane fuel cell. ACS Catal 2(5):825–831. doi: 10.1021/cs300088n CrossRefGoogle Scholar
  13. 13.
    Dicks AL (2006) The role of carbon in fuel cells. J Power Sources 156(2):128–141. doi: 10.1016/j.jpowsour.2006.02.054 CrossRefGoogle Scholar
  14. 14.
    Wildgoose GG, Banks CE, Compton RG (2006) Metal nanopartictes and related materials supported on carbon nanotubes: methods and applications. Small 2(2):182–193. doi: 10.1002/smll.200500324 CrossRefGoogle Scholar
  15. 15.
    Zhang W, Sherrell P, Minett AI, Razal JM, Chen J (2010) Carbon nanotube architectures as catalyst supports for proton exchange membrane fuel cells. Energy Environ Sci 3(9):1286–1293. doi: 10.1039/c0ee00139b CrossRefGoogle Scholar
  16. 16.
    Liu Y, Chen J, Zhang W, Ma Z, Swiegers GF, Too CO, Wallace GG (2008) Nano-Pt modified aligned carbon nanotube arrays are efficient, robust, high surface area. Electrocatalysts. Chem Mater 20(8):2603–2605. doi: 10.1021/cm703471x CrossRefGoogle Scholar
  17. 17.
    Yang J, Goenaga G, Call A, Liu D-J (2010) Polymer electrolyte fuel cell with vertically aligned carbon nanotubes as the electrocatalyst support. Electrochem Solid St 13(6):B55–B57. doi: 10.1149/1.3360901 CrossRefGoogle Scholar
  18. 18.
    Chen J, Minett AI, Liu Y, Lynam C, Sherrell P, Wang C, Wallace GG (2008) Direct growth of flexible carbon nanotube electrodes. Adv Mater 20(3):566–570. doi: 10.1002/adma.200701146 CrossRefGoogle Scholar
  19. 19.
    Zhang W, Minett AI, Gao M, Zhao J, Razal JM, Wallace GG, Romeo T, Chen J (2011) Integrated high-efficiency Pt/carbon nanotube arrays for PEM fuel cells. Adv Energy Mater 1(4):671–677. doi: 10.1002/aenm.201100092 CrossRefGoogle Scholar
  20. 20.
    Yang J, Liu D-J (2007) Three-dimensionally structured electrode assembly for proton-exchange membrane fuel cell based on patterned and aligned carbon nanotubes. Carbon 45(14):2845–2848. doi: 10.1016/j.carbon.2007.09.030 CrossRefGoogle Scholar
  21. 21.
    Sherrell PC, Zhang W, Zhao J, Wallace GG, Chen J, Minett AI (2012) Microwave decoration of Pt nanoparticles on entangled 3D carbon nanotube architectures as PEM fuel cell cathode. Chemsuschem 5(7):1233–1240. doi: 10.1002/cssc.201100667 CrossRefGoogle Scholar
  22. 22.
    Zhang L, Wang X, Xu W, Zhang Y, Li Q, Bradford PD, Zhu Y (2015) Strong and conductive dry carbon nanotube films by microcombing. Small 11(31):3830–3836. doi: 10.1002/smll.201500111 CrossRefGoogle Scholar
  23. 23.
    Han Y, Zhang X, Yu X, Zhao J, Li S, Liu F, Gao P, Zhang Y, Zhao T, Li Q (2015) Bio-inspired aggregation control of carbon nanotubes for ultra-strong composites. Sci Rep. doi: 10.1038/srep11533 Google Scholar
  24. 24.
    Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, Kallitsis I, Galiotis C (2008) Chemical oxidation of multiwalled carbon nanotubes. Carbon 46(6):833–840. doi: 10.1016/j.carbon.2008.02.012 CrossRefGoogle Scholar
  25. 25.
    Paukner C, Koziol KKK (2014) Ultra-pure single wall carbon nanotube fibres continuously spun without promoter. Sci Rep. doi: 10.1038/srep03903 Google Scholar
  26. 26.
    Huang W, Wang Y, Luo GH, Wei F (2003) 99.9% purity multi-walled carbon nanotubes by vacuum high-temperature annealing. Carbon 41(13):2585–2590. doi: 10.1016/s0008-6223(03)00330-0 CrossRefGoogle Scholar
  27. 27.
    Lehman JH, Terrones M, Mansfield E, Hurst KE, Meunier V (2011) Evaluating the characteristics of multiwall carbon nanotubes. Carbon 49(8):2581–2602. doi: 10.1016/j.carbon.2011.03.028 CrossRefGoogle Scholar
  28. 28.
    Pang LSK, Saxby JD, Chatfield SP (1993) Thermogravimetric analysis of carbon nanotubes and nanoparticles. J Phys Chem 97(27):6941–6942. doi: 10.1021/j100129a001 CrossRefGoogle Scholar
  29. 29.
    McClure JP, Thornton JD, Jiang R, Chu D, Cuomo JJ, Fedkiw PS (2012) Oxygen reduction on metal-free nitrogen-doped carbon nanowall electrodes. J Electrochem Soc 159(11):F733–F742. doi: 10.1149/2.056211jes CrossRefGoogle Scholar
  30. 30.
    Osswald S, Havel M, Gogotsi Y (2007) Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy. J Raman Spectrosc 38(6):728–736. doi: 10.1002/jrs.1686 CrossRefGoogle Scholar
  31. 31.
    Stobinski L, Lesiak B, Koever L, Toth J, Biniak S, Trykowski G, Judek J (2010) Multiwall carbon nanotubes purification and oxidation by nitric acid studied by the FTIR and electron spectroscopy methods. J Alloys Compd 501(1):77–84. doi: 10.1016/j.jallcom.2010.04.032 CrossRefGoogle Scholar
  32. 32.
    Kim UJ, Furtado CA, Liu XM, Chen GG, Eklund PC (2005) Raman and IR spectroscopy of chemically processed single-walled carbon nanotubes. J Am Chem Soc 127(44):15437–15445. doi: 10.1021/ja052951o CrossRefGoogle Scholar
  33. 33.
    Liang YY, Li YG, Wang HL, Zhou JG, Wang J, Regier T, Dai HJ (2011) Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater 10(10):780–786. doi: 10.1038/nmat3087 CrossRefGoogle Scholar
  34. 34.
    Mayrhofer KJJ, Blizanac BB, Arenz M, Stamenkovic VR, Ross PN, Markovic NM (2005) The impact of geometric and surface electronic properties of Pt-catalysts on the particle size effect in electocatalysis. J Phys Chem B 109(30):14433–14440. doi: 10.1021/jp051735z CrossRefGoogle Scholar
  35. 35.
    Jung H-Y, Park S, Popov BN (2009) Electrochemical studies of an unsupported PtIr electrocatalyst as a bifunctional oxygen electrode in a unitized regenerative fuel cell. J Power Sources 191(2):357–361. doi: 10.1016/j.jpowsour.2009.02.060 CrossRefGoogle Scholar
  36. 36.
    Gojkovic SL, Zecevic SK, Savinell RF (1998) O2 reduction on an ink-type rotating disk electrode using Pt supported on high-area carbons. J Electrochem Soc 145(11):3713–3720CrossRefGoogle Scholar
  37. 37.
    Chung DY, Jun SW, Yoon G, Kwon SG, Shin DY, Seo P, Yoo JM, Shin H, Chung Y-H, Kim H, Mun BS, Lee K-S, Lee N-S, Yoo SJ, Lim D-H, Kang K, Sung Y-E, Hyeon T (2015) Highly durable and active PtFe nanocatalyst for electrochemical oxygen reduction reaction. J Am Chem Soc 137(49):15478–15485. doi: 10.1021/jacs.5b09653 CrossRefGoogle Scholar
  38. 38.
    Pozio A, Silva RF, De Francesco M, Giorgi L (2003) Nafion degradation in PEFCs from end plate iron contamination. Electrochim Acta 48(11):1543–1549. doi: 10.1016/s0013-4686(03)00026-4 CrossRefGoogle Scholar
  39. 39.
    Wang JX, Uribe FA, Springer TE, Zhang JL, Adzic RR (2008) Intrinsic kinetic equation for oxygen reduction reaction in acidic media: the double Tafel slope and fuel cell applications. Faraday Discuss 140:347–362. doi: 10.1039/b802218f CrossRefGoogle Scholar
  40. 40.
    Huang SY, Ganesan P, Popov BN (2009) Development of conducting polypyrrole as corrosion-resistant catalyst support for polymer electrolyte membrane fuel cell (PEMFC) application. Appl Catal B 93(1–2):75–81. doi: 10.1016/j.apcatb.2009.09.014 CrossRefGoogle Scholar
  41. 41.
    Shinagawa T, Garcia-Esparza AT, Takanabe K (2015) Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci Rep. doi: 10.1038/srep13801 Google Scholar
  42. 42.
    Cheng Y, Zhang H, Varanasi CV, Liu J (2013) Highly efficient oxygen reduction electrocatalysts based on winged carbon nanotubes. Sci Rep. doi: 10.1038/srep03195 Google Scholar
  43. 43.
    Paulus UA, Schmidt TJ, Gasteiger HA, Behm RJ (2001) Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study. J Electroanal Chem 495(2):134–145. doi: 10.1016/s0022-0728(00)00407-1 CrossRefGoogle Scholar
  44. 44.
    Suntivich J, Gasteiger HA, Yabuuchi N, Shao-Horn Y (2010) Electrocatalytic measurement methodology of oxide catalysts using a thin-film rotating disk electrode. J Electrochem Soc 157(8):B1263–B1268. doi: 10.1149/1.3456630 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Sheng-Yang Huang
    • 1
  • Qingwen Li
    • 2
  • Yuntian Zhu
    • 3
  • Peter S. Fedkiw
    • 1
  1. 1.Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleighUSA
  2. 2.Key Laboratory of Nano-Devices and Applications, Suzhou Institute of Nano-Science and Nano-BioticsChinese Academy of SciencesSuzhouChina
  3. 3.Department of Materials Science and EngineeringNorth Carolina State UniversityRaleighUSA

Personalised recommendations