Skip to main content
Log in

Propylene glycol-assisted seed layer-free hydrothermal synthesis of nanostructured WO3 thin films for electrochromic applications

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This research article presents an overview of the hydrothermal synthesis of nanostructured tungsten oxide (WO3) and its electrochromic (EC) performance. A remarkable evolution in the past few years of producing pure and fine WO3 nanostructures using mild hydrothermal synthesis has received great attention. The hydrothermal process is highly suited for producing monodispersed nanoparticles with control over size and morphology, low processing temperature, and easy synthesis. In this article, we developed a facile seed layer-free hydrothermal approach for preparing WO3 thin films with improved EC performance. Structural and morphological properties were studied using X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. The electrochemical stability of the propylene glycol-assisted nanostructured WO3 film was examined in lithium per chlorate-propylene carbonate (LiClO4-PC) electrolyte for prolonged color/bleach cycles. The results showed an improvement in electrochemical stability with fast response time.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

EC:

Electrochromic

DDW:

Double distilled water

SCE:

Standard calomel electrode

He–Ne:

Helium–Neon

CV:

Cyclic voltammogram

CC:

Chronocoulometric

Q i :

Intercalated charge (C)

CE:

Coloration efficiency (cm2 C−1)

A :

Area (cm2)

T b :

Transmittance of thin films in the bleached states (%)

T c :

Transmittance of thin films in the colored states (%)

ΔOD:

Optical density (dimensionless)

K α :

Emission lines in X ray Diffraction

a, b and c with α, β and γ :

Lattice parameters of the unit cell

Θ:

Diffracting angle in XRD

Li+ :

Lithium

e :

Electron

References

  1. Jiao Z, Wang J, Ke L, Liu X, Demir HV, Yang MF, Sun XW (2012) Electrochim Acta 63:153–160

    Article  CAS  Google Scholar 

  2. Liu Z, Miyauchi M, Yamazaki T, Shen Y (2009) Sens Actuators B 140:514–519

    Article  CAS  Google Scholar 

  3. Jiao Z, Sun XW, Wang J, Ke L, Demir HV (2010) J Phys D Appl Phys 43:285501–285506

    Article  Google Scholar 

  4. Jiao Z, Wang J, Ke L, Sun XW, Demir HV (2011) ACS Appl Mater Interfaces 3:229–236

    Article  CAS  Google Scholar 

  5. Miyauchi M, Nakajima A, Watanabe T, Hashimoto K (2002) Chem Mater 14:2812–2816

    Article  CAS  Google Scholar 

  6. Li XL, Liu JF, Li YD (2003) Inorg Chem 42:921–924

    Article  CAS  Google Scholar 

  7. Teoh LG, Shieh J, Lai WH, Hung IM, Hon MH (2005) J Alloy Compd 396:251–254

    Article  CAS  Google Scholar 

  8. Hibino M, Han WC, Kudo T (2000) Solid State Ion 135:61–69

    Article  CAS  Google Scholar 

  9. Zhang B, Liu JD, Guan SK, Wan YZ, Zhang YZ, Chen RF (2007) J Alloy Compd 439:55–58

    Article  CAS  Google Scholar 

  10. Kobosew NI, Nekrassov NZ (1930) Electrochem 36:529–544

    Google Scholar 

  11. Zhang J, Tu JP, Xia XH, Wang XL, Gu CD (2011) J Mater Chem 21:5492–5498

    Article  CAS  Google Scholar 

  12. Li H, Shi G, Wang H, Zhang Q, Li Y (2014) J Mater Chem A 2:11305–11310

    Article  CAS  Google Scholar 

  13. Song X, Zhao Y, Zheng Y (2006) Mater Lett 60:3405–3408

    Article  CAS  Google Scholar 

  14. Zheng F, Zhang M, Guo M (2013) Thin Solid Films 534:45–53

    Article  CAS  Google Scholar 

  15. Nah YC, Ghicov A, Kim D, Schmuki P (2008) Electrochem Commun 10:1777–1780

    Article  CAS  Google Scholar 

  16. Shibuya M, Miyauchi M (2009) Chem Phys Lett 473:126–130

    Article  CAS  Google Scholar 

  17. Houweling ZS, Harks PPRML, Kuang Y, van derWerf CHM, Geus JW, Schropp REI (2015) Thin Solid Films 575:76–83

    Article  CAS  Google Scholar 

  18. Chien AT (1998) Hydrothermal epitaxy of perovskite thin films, doctor of philosophy. University of California, California

    Google Scholar 

  19. Jiao Z, Wang X, Wang J, Ke L, Demir HV, Koh TW, Sun XW (2012) Chem Commun 48:365–367

    Article  CAS  Google Scholar 

  20. Zhao ZG, Miyauchi M (2008) Angew Chem Int Ed 47:7051–7055

    Article  CAS  Google Scholar 

  21. Rajagopal DN, Mangalaraj D, Djaoued Y, Robichaud J, Khyzhun OY (2009) Nanoscale Res Lett 4:8–14

    Article  Google Scholar 

  22. Huang K, Pan Q, Yang F, Ni S, Wei X, He D (2008) J Phys D: Appl Phys 41:155417–155420

    Article  Google Scholar 

  23. Stoycheva T, Vallejos S, Blackman C, Moniz SJA, Calderer J, Correig X (2012) Sens Actuators B Chem 161:406–413

    Article  CAS  Google Scholar 

  24. Kumar VB, Mohanta D (2011) Bull Mater Sci 34:435–442

    Article  CAS  Google Scholar 

  25. Deepa M, Srivastava AK, Sood KN, Agnihotry SA (2006) Nanotechnology 17:2625–2630

    Article  CAS  Google Scholar 

  26. Karimi M, Sahraiyan B, Naghipour F, Sheikholeslami Z, Davoodi MG (2013) Int J Agric Crop Sci 5(11):1209–1213

    Google Scholar 

  27. Pourfarzad A, Khodaparast MHH, Karimi M, Mortazavi SA, Davoodi MG, Sourki AH, Jahromi SHR (2011) J Food Process Eng 34:1435–1448

    Article  CAS  Google Scholar 

  28. The Dow Chemical Company (2003) A guide to glycols. http://msdssearch.dow.com/PublishedLiteratureDOWCOM/dh_091b/0901b8038091b508.pdf?filepath=propyleneglycol/pdfs/noreg/117-01682.pdf&fromPage=GetDoc. Accessed 26 Sept 2016

  29. Onnow DR, Kullman L, Granqvist CG (1996) J Appl Phys 80:423–430

    Article  Google Scholar 

  30. Her YC, Chang CC (2014) Cryst Eng Comm 16:5379–5386

    Article  CAS  Google Scholar 

  31. Maheswari SP, Habib MA (1988) Sol Energy Mater 18:75–82

    Article  CAS  Google Scholar 

  32. Kim YS, Wang F, Hickner M, Zawodzinski TA, McGrath JE (2003) J Membr Sci 212:263–282

    Article  CAS  Google Scholar 

  33. Snejdrova E, Dittrich M (2012) Pharmaceutically Used Plasticizers. In: Luqman M (ed) Recent Advances in Plasticizers. InTech, Europe, pp 45–68

  34. Prabhu N, Agilan S, Muthukumarasamy N, Senthilkumaran CK (2013) Dig J Nanomater Biostruct 8:1483–1490

    Google Scholar 

Download references

Acknowledgments

The authors would like to express gratitude to the Department of Science and Technology (DST), Science and Engineering Research Board (SERB), New Delhi, India, for full financial support (SERB Sanction Order No and date: SB/FTP/PS-030/2013, Date: 21.02.2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kadam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadam, A.V. Propylene glycol-assisted seed layer-free hydrothermal synthesis of nanostructured WO3 thin films for electrochromic applications. J Appl Electrochem 47, 335–342 (2017). https://doi.org/10.1007/s10800-016-1011-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-016-1011-8

Keywords

Navigation