Skip to main content
Log in

Electrochemical dispersion technique for preparation of hybrid MO x –C supports and Pt/MO x –C electrocatalysts for low-temperature fuel cells

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Hybrid MOx–C (M = Sn, Ni) supports and Pt/MO x –C catalysts for direct alcohol fuel cells were prepared via the electrochemical oxidation and dispersion of a metal under the influence of a pulsed alternating current. We estimated conductivity and specific surface area of as-prepared SnO2, NiO and hybrid supports, as well as estimated their morphology and the morphology of Pt-based catalysts using X-ray diffraction, transmission and scanning electron microscopy analyses. Pt/MO x –C (M = Sn, Ni) catalytic systems with oxide contents of 30 and 60 % in hybrid supports and a Pt content of 25 % were used for the electrochemical oxidation of CO, methanol and ethanol in acidic and alkaline solutions. The presence of oxides in the hybrid supports for catalysts reduces the onset potential for the electrooxidation of CO and alcohols in an acidic solution. At Pt/SnO2–C, the onset potential of ethanol electrooxidation in an acidic solution decreases by 170 mV and increases the rate of the oxidation process by more than sevenfold at the low Tafel potential region. In alkaline solutions, the presence of metal oxides in the catalysts is not so effective, which is probably due to the high coverage of the platinum surface with oxygen-containing species. The Pt catalyst on the SnO2–C hybrid support exhibited superior electrochemical stability in an acidic solution and Pt/NiO–C—in an alkaline solution. The difference in the optimum oxide content (30 % for SnO2, 60 % for NiO) of the catalysts can be attributed to different morphologies of the oxides.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dodds PE, Staffell I, Hawkes AD, Li F, Grünewald P, McDowall W, Ekins P (2015) Hydrogen and fuel cell technologies for heating: a review. Int J Hydrog Energy 40:2065–2083. doi:10.1016/j.ijhydene.2014.11.059

    Article  CAS  Google Scholar 

  2. Braunchweig B, Hibbitts D, Neurock M, Wieckowski A (2013) Electrocatalysis: a direct alcohol fuel cell and surface science perspective. Catal Today 202:197–209. doi:10.1016/j.cattod.2012.08.013

    Article  CAS  Google Scholar 

  3. Cheng X, Shi Z, Glass N, Zhang L, Zhang J, Song D, Liu Z-S, Wang H, Shen J (2007) A review of PEM hydrogen fuel cell contamination: impacts, mechanisms, and mitigation. J Power Sources 165:739–756. doi:10.1016/j.jpowsour.2006.12.012

    Article  CAS  Google Scholar 

  4. Mussatto SI, Dragone G, Guimaraes PM, Silva JP, Carneiro LM, Roberto IC, Vicente A, Domingues L, Teixeira JA (2010) Technological trends, global market, and challenges of bio-ethanol production. Biotechnol Adv 28:817–830. doi:10.1016/j.biotechadv.2010.07.001

    Article  CAS  Google Scholar 

  5. Pedersen CM, Escudero-Escribano M, Velázquez-Palenzuela A, Christensen LH, Chorkendorff I, Stephens IEL (2015) Benchmarking Pt-based electrocatalysts for low temperature fuel cell reactions with the rotating disk electrode: oxygen reduction and hydrogen oxidation in the presence of CO (review article). Electrochim Acta 179:647–657. doi:10.1016/j.electacta.2015.03.176

    Article  CAS  Google Scholar 

  6. Vigier F, Rousseau S, Coutanceau C, Leger J-M, Lamy C (2006) Electrocatalysis for the direct alcohol fuel cell. Top Catal 40:111–121. doi:10.1007/s11244-006-0113-7

    Article  CAS  Google Scholar 

  7. Iwasita T (2002) Electrocatalysis of methanol oxidation. Electrochim Acta 47:3663–3674. doi:10.1016/S0013-4686(02)00336-5

    Article  CAS  Google Scholar 

  8. Lipkovski J, Ross PN (1998) Electrocatalysis. Wiley, New York

    Google Scholar 

  9. Thomas JM, Thomas WJ (1967) Introduction to the principles of heteroreneous catalysis. Academic Press, London

    Google Scholar 

  10. Tian F, Jinnouchi R, Anderson AB (2009) How potentials of zero charge and potentials for water oxidation to OH(ads) on Pt(111) Electrodes vary with coverage. J Phys Chem C 113:17484–17492. doi:10.1021/jp905377d

    Article  CAS  Google Scholar 

  11. Watanabe M, Motoo S (1975) Electrocatalysis by ad-atoms. J Electroanal Chem Interfacial Electrochem 60:267–273. doi:10.1016/S0022-0728(75)80261-0

    Article  CAS  Google Scholar 

  12. Zheng Q-W, Fan C-J, Zhen C-H, Zhou Z-Y, Sun S-G (2008) Irreversible adsorption of Sn adatoms on basal planes of Pt single crystal and its impact on electrooxidation of ethanol. Electrochim Acta 53:6081–6088. doi:10.1016/j.electacta.2008.01.078

    Article  CAS  Google Scholar 

  13. Smirnova NV, Petrii OA, Grzejdziak A (1988) Effect of ad-atoms on the electro-oxidation of ethylene glycol and oxalic acid on platinized platinum. J Electroanal Chem Interfacial Electrochem 251:73–87. doi:10.1016/0022-0728(88)80386-3

    Article  CAS  Google Scholar 

  14. Bach Delpeuch A, Chatenet M, Rau MS, Cremers C (2015) Influence of H- and OH-adsorbates on the ethanol oxidation reaction: a DEMS study. Phys Chem Chem Phys 17:10881–10893. doi:10.1039/C5CP00132C

    Article  CAS  Google Scholar 

  15. St. John S, Boolchand P, Angelopoulos AP (2013) Improved electrocatalytic ethanol oxidation activity in acidic and alkaline electrolytes using size-controlled Pt–Sn nanoparticles. Langmuir 29:16150–16159. doi:10.1021/la403704w

    Article  CAS  Google Scholar 

  16. Antolini E (2011) An empirical model to evaluate the contribution of alloyed and non-alloyed tin to the ethanol oxidation reaction on Pt–Sn/C catalysts based on the presence of SnO2 and a Pt(1−x)Sn x solid solution: application to DEFC performance. Int J Hydrog Energy 36:11043–11047. doi:10.1016/j.ijhydene.2011.05.099

    Article  CAS  Google Scholar 

  17. Smirnova NV, Kuriganova AB, Leont’eva DV, Leont’ev IN, Mikheikin AS (2013) Structural and electrocatalytic properties of Pt/C and Pt–Ni/C catalysts prepared by electrochemical dispersion. Kinet Catal 54:255–262. doi:10.1134/S0023158413020146

    Article  CAS  Google Scholar 

  18. Ciapina EG, Santos SF, Gonzalez ER (2013) The electro-oxidation of carbon monoxide and ethanol on supported Pt nanoparticles: the influence of the support and catalyst microstructure. J Solid State Electrochem 17:1831–1842. doi:10.1007/s10008-013-2120-5

    Article  CAS  Google Scholar 

  19. Figueiredo MC, Santasalo-Aarnio A, Vidal-Iglesias FJ, Solla-Gullón J, Feliu JM, Kontturi K, Kallio T (2013) Tailoring properties of platinum supported catalysts by irreversible adsorbed adatoms toward ethanol oxidation for direct ethanol fuel cells. Appl Catal B 140–141:378–385. doi:10.1016/j.apcatb.2013.04.038

    Article  Google Scholar 

  20. Del Colle V, Souza-Garcia J, Tremiliosi-Filho G, Herrero E, Feliu JM (2011) Electrochemical and spectroscopic studies of ethanol oxidation on Pt stepped surfaces modified by tin adatoms. Phys Chem Chem Phys 13:12163–12172. doi:10.1039/C1CP20546C

    Article  Google Scholar 

  21. Antolini E, Salgado JRC, Gonzalez ER (2006) The stability of Pt–M (M = first row transition metal) alloy catalysts and its effect on the activity in low temperature fuel cells: a literature review and tests on a Pt–Co catalyst. J Power Sources 160:957–968. doi:10.1016/j.jpowsour.2006.03.006

    Article  CAS  Google Scholar 

  22. Baranova EA, Padilla MA, Halevi B, Amir T, Artyushkova K, Atanassov P (2012) Electrooxidation of ethanol on PtSn nanoparticles in alkaline solution: correlation between structure and catalytic properties. Electrochim Acta 80:377–382. doi:10.1016/j.electacta.2012.07.030

    Article  CAS  Google Scholar 

  23. López-Cudero A, Solla-Gullón J, Herrero E, Aldaz A, Feliu JM (2010) CO electrooxidation on carbon supported platinum nanoparticles: effect of aggregation. J Electroanal Chem Interfacial Electrochem 644:117–126. doi:10.1016/j.jelechem.2009.06.016

    Article  Google Scholar 

  24. Hitchcock AP, Berejnov V, Lee V, West M, Colbow V, Dutta M, Wessel S (2014) Carbon corrosion of proton exchange membrane fuel cell catalyst layers studied by scanning transmission X-ray microscopy. J Power Sources 266:66–78. doi:10.1016/j.jpowsour.2014.04.119

    Article  CAS  Google Scholar 

  25. Dhanushkodi SR, Tam M, Kundu S, Fowler MW, Pritzker MD (2013) Carbon corrosion fingerprint development and de-convolution of performance loss according to degradation mechanism in PEM fuel cells. J Power Sources 240:114–121. doi:10.1016/j.jpowsour.2013.03.033

    Article  CAS  Google Scholar 

  26. Li L, Qian Y, Yang J, Tan X, Dai Z, Jin Y, Wang H, Qu W, Chu Y (2016) A novel structural design of hybrid nanotube with CNTs and CeO2 supported Pt nanoparticles with improved performance for methanol electro-oxidation. Int J Hydrogen Energy 41:9284–9294. doi:10.1016/j.ijhydene.2016.04.069

    Article  CAS  Google Scholar 

  27. Amin RS, Fetohi AE, Hameed RMA, El-Khatib KM (2016) Electrocatalytic activity of Pt–ZrO2 supported on different carbon materials for methanol oxidation in H2SO4 solution. Int J Hydrog Energy 41:1846–1858. doi:10.1016/j.ijhydene.2015.11.040

    Article  CAS  Google Scholar 

  28. Comignani V, Sieben JM, Brigante ME, Duarte MME (2015) Carbon supported Pt–NiO nanoparticles for ethanol electro-oxidation in acid media. J Power Sources 278:119–127. doi:10.1016/j.jpowsour.2014.12.063

    Article  CAS  Google Scholar 

  29. Wu M, Han M, Li M, Li Y, Zeng J, Liao S (2014) Preparation and characterizations of platinum electrocatalysts supported on thermally treated CeO2–C composite support for polymer electrolyte membrane fuel cells. Electrochim Acta 139:308–314. doi:10.1016/j.electacta.2014.07.029

    Article  CAS  Google Scholar 

  30. Dou M, Hou M, Liang D, Lu W, Shao Z, Yi B (2013) SnO2 nanocluster supported Pt catalyst with high stability for proton exchange membrane fuel cells. Electrochim Acta 92:468–473. doi:10.1016/j.electacta.2013.01.070

    Article  CAS  Google Scholar 

  31. Lv H, Cheng N, Peng T, Pan M, Mu S (2012) High stability platinum electrocatalysts with zirconia-carbon hybrid supports. J Mater Chem 22:1135–1141. doi:10.1039/C1JM14076K

    Article  CAS  Google Scholar 

  32. Dou M, Hou M, Zhang H, Li G, Lu W, Wei Z, Shao Z, Yi B (2012) A highly stable anode, carbon-free, catalyst support based on tungsten trioxide nanoclusters for proton-exchange membrane fuel cells. ChemSusChem 5:945–951. doi:10.1002/cssc.201100706

    Article  CAS  Google Scholar 

  33. Jiang Z-Z, Wang Z-B, Chu Y-Y, Gu D-M, Yin G-P (2011) Ultrahigh stable carbon riveted Pt/TiO2–C catalyst prepared by in situ carbonized glucose for proton exchange membrane fuel cell. Energy Environ Sci 4:728–735. doi:10.1039/C0EE00475H

    Article  CAS  Google Scholar 

  34. Kim DB, Chun H-J, Lee YK, Kwon H-H, Lee H-I (2010) Preparation of Pt/NiO–C electrocatalyst and heat-treatment effect on its electrocatalytic performance for methanol oxidation. Int J Hydrog Energy 35:313–320. doi:10.1016/j.ijhydene.2009.10.037

    Article  CAS  Google Scholar 

  35. Cui X, Guo L, Cui F, He Q, Shi J (2009) Electrocatalytic Activity and CO Tolerance Properties of Mesostructured Pt/WO3 composite as an anode catalyst for PEMFCs. J Phys Chem C 113:4134–4138. doi:10.1021/jp8079205

    Article  CAS  Google Scholar 

  36. Shanmugam S, Gedanken A (2007) Carbon-coated anatase TiO2 nanocomposite as a high-performance electrocatalyst support. Small 3:1189–1193. doi:10.1002/smll.200600636

    Article  CAS  Google Scholar 

  37. Feng Y-Y, Kong W-Q, Yin Q-Y, Du L-X, Zheng Y-T, Kong D-S (2014) Platinum catalysts promoted by In doped SnO2 support for methanol electrooxidation in alkaline electrolyte. J Power Sources 252:156–163. doi:10.1016/j.jpowsour.2013.12.008

    Article  CAS  Google Scholar 

  38. Higuchi E, Takase T, Chiku M, Inoue H (2014) Preparation of ternary Pt/Rh/SnO2 anode catalysts for use in direct ethanol fuel cells and their electrocatalytic activity for ethanol oxidation reaction. J Power Sources 263:280–287. doi:10.1016/j.jpowsour.2014.04.056

    Article  CAS  Google Scholar 

  39. Shen PK, Xu C, Zeng R, Liu Y (2006) Electro-oxidation of Methanol on NiO-Promoted Pt/C and Pd/C Catalysts. Electrochem Solid-State Lett 9:A39–A42. doi:10.1149/1.2139975

    Article  CAS  Google Scholar 

  40. Simões FC, Olivi P (2010) Oxygen Reduction Reaction on Pt–NiO x /C, Pt–CoO x /C, and Pt–SnO2/C Electrodes in the Presence of Ethanol. Electrocatalysis 1:163–168. doi:10.1007/s12678-010-0026-x

    Article  Google Scholar 

  41. Amin RS, Hameed RMA, El-Khatib KM, Youssef ME, Elzatahry AA (2012) Pt–NiO/C anode electrocatalysts for direct methanol fuel cells. Electrochim Acta 59:499–508. doi:10.1016/j.electacta.2011.11.013

    Article  CAS  Google Scholar 

  42. Tripković AV, Popović KD, Lović JD, Jovanović VM, Kowal A (2004) Methanol oxidation at platinum electrodes in alkaline solution: comparison between supported catalysts and model systems. J Electroanal Chem 572:119–128. doi:10.1016/j.jelechem.2004.06.007

    Article  Google Scholar 

  43. Kuriganova AB, Vlaic CA, Ivanov S, Leontyeva DV, Bund A, Smirnova NV (2016) Electrochemical dispersion method for the synthesis of SnO2 as anode material for lithium ion batteries. J Appl Electrochem 46:527–538. doi:10.1007/s10800-016-0936-2

    Article  CAS  Google Scholar 

  44. Kuriganova AB, Smirnova NV (2014) Pt/SnO x –C composite material for electrocatalysis. Mendeleev Commun 24:351–352. doi:10.1016/j.mencom.2014.11.013

    Article  CAS  Google Scholar 

  45. Leontyeva DV, Leontyev IN, Avramenko MV, Yuzyuk YI, Kukushkina YA, Smirnova NV (2013) Electrochemical dispergation as a simple and effective technique toward preparation of NiO based nanocomposite for supercapacitor application. Electrochim Acta 114:356–362. doi:10.1016/j.electacta.2013.10.031

    Article  CAS  Google Scholar 

  46. Leontyev I, Kuriganova A, Kudryavtsev Y, Dkhil B, Smirnova N (2012) New life of a forgotten method: electrochemical route toward highly efficient Pt/C catalysts for low-temperature fuel cells. Appl Catal A 431–432:120–125. doi:10.1016/j.apcata.2012.04.025

    Article  Google Scholar 

  47. Smirnova NV, Kuriganova AB, Novikova KS, Gerasimova EV (2014) The role of carbon support morphology in the formation of catalytic layer of solid-polymer fuel cell. Russ J Electrochem 50:899–903. doi:10.1134/S1023193514070143

    Article  CAS  Google Scholar 

  48. Doronkin DE, Kuriganova AB, Leontyev IN, Baier S, Lichtenberg H, Smirnova NV, Grunwaldt J-D (2016) Electrochemically Synthesized Pt/Al2O3 Oxidation Catalysts. Catal Lett 146:452–463. doi:10.1007/s10562-015-1651-z

    Article  CAS  Google Scholar 

  49. Brimaud S, Pronier S, Coutanceau C, Léger JM (2008) New findings on CO electrooxidation at platinum nanoparticle surfaces. Electrochem Commun 10:1703–1707. doi:10.1016/j.elecom.2008.08.045

    Article  CAS  Google Scholar 

  50. Ayeshamariam A, Samy RP (2013) Synthesis, structural and optical characterizations of SnO2 nanoparticles. J Photonics Spintron 2:4–8

    CAS  Google Scholar 

  51. Makhlouf SA, Kassem MA, Abdel-Rahim MA (2009) Particle size-dependent electrical properties of nanocrystalline NiO. J Mater Sci 44:3438–3444. doi:10.1007/s10853-009-3457-0

    Article  CAS  Google Scholar 

  52. Borges PD, Scolfaro LMR, Leite Alves HW, da Silva EF (2010) DFT study of the electronic, vibrational, and optical properties of SnO2. Theor Chem Acc 126:39–44. doi:10.1007/s00214-009-0672-3

    Article  CAS  Google Scholar 

  53. Shklovskiĭ BI, Éfros AL (1975) Percolation theory and conductivity of strongly inhomogeneous media. Sov Phys Uspekhi 18:845. www.stacks.iop.org/0038-5670/18/i=11/a=R01

    Article  Google Scholar 

  54. Guo D-J, You J-M (2012) Highly catalytic activity of Pt electrocatalyst supported on sulphated SnO2/multi-walled carbon nanotube composites for methanol electro-oxidation. J Power Sources 198:127–131. doi:10.1016/j.jpowsour.2011.10.017

    Article  CAS  Google Scholar 

  55. Vidal-Iglesias FJ, Montiel V, Solla-Gullón J (2016) Influence of the metal loading on the electrocatalytic activity of carbon-supported (100) Pt nanoparticles. J Solid State Electrochem 20:1107–1118. doi:10.1007/s10008-015-2954-0

    Article  CAS  Google Scholar 

  56. Moghaddam RB, Pickup PG (2012) Support effects on the oxidation of ethanol at Pt nanoparticles. Electrochim Acta 65:210–215. doi:10.1016/j.electacta.2012.01.042

    Article  CAS  Google Scholar 

  57. Ruiz-Camacho B, Santoyo HHR, Medina-Flores JM, Álvarez-Martínez O (2014) Platinum deposited on TiO2–C and SnO2–C composites for methanol oxidation and oxygen reduction. Electrochim Acta 120:344–349. doi:10.1016/j.electacta.2013.12.055

    Article  CAS  Google Scholar 

  58. Petry OA, Podlovchenko BI, Frumkin AN (1959) Lal H (1965) The behaviour of platinized-platinum and platinum-ruthenium electrodes in methanol solutions. J Electroanal Chem 10:253–269. doi:10.1016/0022-0728(65)85060-4

    Google Scholar 

  59. Podlovchenko BI, Petry OA, Frumkin AN (1959) Lal H (1966) The behaviour of a platinized-platinum electrode in solutions of alcohols containing more than one carbon atom, aldehydes and formic acid. J Electroanal Chem 11:12–25. doi:10.1016/0022-0728(66)80053-0

    Google Scholar 

  60. Melke J, Schoekel A, Gerteisen D, Dixon D, Ettingshausen F, Cremers C, Roth C, Ramaker DE (2012) Electrooxidation of ethanol on Pt. an in Situ and time-resolved XANES study. J Phys Chem C 116:2838–2849. doi:10.1021/jp206295h

    Article  CAS  Google Scholar 

  61. Jing M, Jiang L, Yi B, Sun G (2013) Comparative study of methanol adsorption and electro-oxidation on carbon-supported platinum in acidic and alkaline electrolytes. J Electroanal Chem 688:172–179. doi:10.1016/j.jelechem.2012.10.028

    Article  CAS  Google Scholar 

  62. Tripković AV, Popović KD, Momčilović JD, Dražić DM (1998) Kinetic and mechanistic study of methanol oxidation on a Pt(100) surface in alkaline media1. J Electroanal Chem 448:173–181. doi:10.1016/S0022-0728(97)00141-1

    Article  Google Scholar 

  63. Spendelow JS, Wieckowski A (2007) Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media. Phys Chem Chem Phys 9:2654–2675. doi:10.1039/B703315J

    Article  CAS  Google Scholar 

  64. Lai SCS, Koper MTM (2009) Ethanol electro-oxidation on platinum in alkaline media. Phys Chem Chem Phys 11:10446–10456. doi:10.1039/B913170A

    Article  CAS  Google Scholar 

  65. Tripković AV, Popović KD, Grgur BN, Blizanac B, Ross PN, Marković NM (2002) Methanol electrooxidation on supported Pt and PtRu catalysts in acid and alkaline solutions. Electrochim Acta 47:3707–3714. doi:10.1016/S0013-4686(02)00340-7

    Article  Google Scholar 

  66. Leontyev IN, Leontyeva DV, Kuriganova AB, Popov YV, Maslova OA, Glebova NV, Nechitailov AA, Zelenina NK, Tomasov AA, Hennet L, Smirnova NV (2015) Characterization of the electrocatalytic activity of carbon-supported platinum-based catalysts by thermal gravimetric analysis. Mendeleev Commun 25:468–469. doi:10.1016/j.mencom.2015.11.024

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support by the Russian Science Foundation (Grant No. 14-23-00078) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Kuriganova.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 458 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuriganova, A.B., Leontyeva, D.V., Ivanov, S. et al. Electrochemical dispersion technique for preparation of hybrid MO x –C supports and Pt/MO x –C electrocatalysts for low-temperature fuel cells. J Appl Electrochem 46, 1245–1260 (2016). https://doi.org/10.1007/s10800-016-1006-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-016-1006-5

Keywords

Navigation