Skip to main content

Advertisement

Log in

Decoration of graphite fiber fabric cathode with electron transfer assisting material for enhanced bioelectrochemical methane production

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The surface of graphite fiber fabric (GFF) was mounted with an electron transfer assisting material, such as Ni, Fe, or ammonia, along with multiwall carbon nanotube (MWCNT) to enhance the growth of electrochemically active bacteria (EAB) using an electrophoretic deposition method. The decorated surface of GFF was changed to rough and porous, and the electric conductivity was improved from 7.52 to less than 0.2 Ω cm−1. The bioelectrochemical methane productions for the decorated cathodes were compared in a batch bioelectrochemical anaerobic reactor. During the enrichment of EAB on the cathode, it was observed that the decorated cathode requires a longer initial lag phase (9–23 days), but the maximum methane production rate from the control cathode is considerably improved after the enrichment of EAB. The decoration materials reduce the charge transfer resistance on the cathode for the bioelectrochemical reduction of carbon dioxide, and improve the production of methane. The effectiveness of the electron transfer assisting materials for the bioelectrochemical methane production was in the order of Ni, Fe, and ammonia. The maximum methane production rate for the cathode decorated with MWCNT and Ni was 44.8 mL CH4 L−1 d−1, which was 57.2 % higher than the control GFF cathode, and the methane yield was as much as 326.3 mL CH4 g \({\text{COD}}_{\text{r}}^{{\text{ - }1}}\) compared to the 252.8 mL CH4 g \({\text{COD}}_{\text{r}}^{{\text{ - }1}}\) for the control cathode, or 162.1 mL CH4 g \({\text{COD}}_{\text{r}}^{{\text{ - }1}}\) of the anaerobic control.

Graphical abstract

Schematic diagram of electron transfer assisting material on the cathode for enhancing bioelectrochemical methane production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Song YC, Kwon SJ, Woo JH (2004) Mesophilic and thermophilic temperature co-phase anaerobic digestion compared with single-stage mesophilic-and thermophilic digestion of sewage sludge. Water Res 38:1653–1662. doi:10.1016/j.watres.2003.12.019

    Article  CAS  Google Scholar 

  2. Song YC, Feng Q, Ahn Y (2016) Performance of the bio-electrochemical anaerobic digestion of sewage sludge at different hydraulic retention times. Energ Fuel 30:352–359. doi:10.1021/acs.energyfuels.5b02003

    Article  CAS  Google Scholar 

  3. Shin HS, Song YC (1995) A model for evaluation of anaerobic degradation characteristics of organic waste: focusing on kinetics, rate-limiting step. Environ Technol 16:775–784. doi:10.1080/09593331608616316

    Article  CAS  Google Scholar 

  4. Cheng S, Xing D, Call DF, Logan BE (2009) Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol 43:3953–3958. doi:10.1021/es803531g

    Article  CAS  Google Scholar 

  5. Villano M, Aulenta F, Ciucci C, Ferri T, Giuliano A, Majone M (2010) Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture. Bioresour Technol 101:3085–3090. doi:10.1016/j.biortech.2009.12.077

    Article  CAS  Google Scholar 

  6. Guo X, Liu J, Xiao B (2013) Bioelectrochemical enhancement of hydrogen and methane production from the anaerobic digestion of sewage sludge in single-chamber membrane-free microbial electrolysis cells. Int J Hydrogen Energ 38:1342–1347. doi:10.1016/j.ijhydene.2012.11.087

    Article  CAS  Google Scholar 

  7. Feng Y, Zhang Y, Chen S, Quan X (2015) Enhanced production of methane from waste activated sludge by the combination of high-solid anaerobic digestion and microbial electrolysis cell with iron–graphite electrode. Chem Eng J 259:787–794. doi:10.1016/j.cej.2014.08.048

    Article  CAS  Google Scholar 

  8. Sun R, Zhou A, Jia J, Liang Q, Liu Q, Xing D, Ren N (2015) Characterization of methane production and microbial community shifts during waste activated sludge degradation in microbial electrolysis cells. Bioresour Technol 175:68–74. doi:10.1016/j.biortech.2014.10.052

    Article  CAS  Google Scholar 

  9. Sasaki D, Sasaki K, Watanabe A, Morita M, Matsumoto N, Igarashi Y, Ohmura N (2013) Operation of a cylindrical bioelectrochemical reactor containing carbon fiber fabric for efficient methane fermentation from thickened sewage sludge. Bioresour Technol 129:366–373. doi:10.1016/j.biortech.2012.11.048

    Article  CAS  Google Scholar 

  10. Wang A, Liu W, Cheng S, Xing D, Zhou J, Logan BE (2009) Source of methane and methods to control its formation in single chamber microbial electrolysis cells. Int J Hydrogen Energ 34:3653–3658. doi:10.1016/j.ijhydene.2009.03.005

    Article  CAS  Google Scholar 

  11. Villano M, Monaco G, Aulenta F, Majone M (2011) Electrochemically assisted methane production in a biofilm reactor. J Power Sources 196:9467–9472. doi:10.1016/j.jpowsour.2011.07.016

    Article  CAS  Google Scholar 

  12. Feng Q, Song YC, Bae BU (2016) Influence of applied voltage on the performance of bioelectrochemical anaerobic digestion of sewage sludge and planktonic microbial communities at ambient temperature. Bioresour Technol 220:500–508. doi:10.1016/j.biortech.2016.08.085

    Article  CAS  Google Scholar 

  13. Biffinger J, Ribbens M, Ringeisen B, Pietron J, Finkel S, Nealson K (2009) Characterization of electrochemically active bacteria utilizing a high-throughput voltage-based screening assay. Biotechnol Bioeng 102:436–444. doi:10.1002/bit.22072

    Article  CAS  Google Scholar 

  14. Nam JY, Tokash JC, Logan BE (2011) Comparison of microbial electrolysis cells operated with added voltage or by setting the anode potential. Int J Hydrogen energ 36:10550–10556. doi:10.1016/j.ijhydene.2011.05.148

    Article  CAS  Google Scholar 

  15. Xafenias N, Mapelli V (2014) Performance and bacterial enrichment of bioelectrochemical systems during methane and acetate production. Int J Hydrogen energ 39:21864–21875. doi:10.1016/j.ijhydene.2014.05.038

    Article  CAS  Google Scholar 

  16. Jiang Y, Su M, Zhang Y, Zhan G, Tao Y, Li D (2013) Bioelectrochemical systems for simultaneously production of methane and acetate from carbon dioxide at relatively high rate. Int J Hydrogen energ 38:3497–3502. doi:10.1016/j.ijhydene.2012.12.107

    Article  CAS  Google Scholar 

  17. Song YC, Kim DS, Woo JH, Subha B, Jang S, Sivakumar S (2015) Effect of surface modification of anode with surfactant on the performance of microbial fuel cell. Int J Energ Res 39:860–868. doi:10.1002/er.3284

    Article  CAS  Google Scholar 

  18. Feng Q, Song YC (2016) Surface modification of a graphite fiber fabric anode for enhanced bioelectrochemical methane production. Energ Fuel 30:6467–6474. doi:10.1021/acs.energyfuels.6b00959

    Article  Google Scholar 

  19. Tsai HY, Wu CC, Lee CY, Shih EP (2009) Microbial fuel cell performance of multiwall carbon nanotubes on carbon cloth as electrodes. J Power Sources 194:199–205. doi:10.1016/j.jpowsour.2009.05.018

    Article  CAS  Google Scholar 

  20. Deng Q, Li X, Zuo J, Ling A, Logan BE (2010) Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell. J Power Sources 195:1130–1135. doi:10.1016/j.jpowsour.2009.08.092

    Article  CAS  Google Scholar 

  21. Wei J, Liang P, Huang X (2011) Recent progress in electrodes for microbial fuel cells. Bioresour Technol 102:9335–9344. doi:10.1016/j.biortech.2011.07.019

    Article  CAS  Google Scholar 

  22. Zhou M, Chi M, Luo J, He H, Jin T (2011) An overview of electrode materials in microbial fuel cells. J Power Sources 196:4427–4435. doi:10.1016/j.jpowsour.2011.01.012

    Article  CAS  Google Scholar 

  23. Kadier A, Simayi Y, Chandrasekhar K, Ismail M, Kalil MS (2015) Hydrogen gas production with an electroformed Ni mesh cathode catalysts in a single-chamber microbial electrolysis cell (MEC). Int J Hydrogen Energy 40(41):14095–14103. doi:10.1016/j.ijhydene.2015.08.095

    Article  CAS  Google Scholar 

  24. Dai H, Yang H, Liu X, Jian X, Liang Z (2016) Electrochemical evaluation of nano-Mg(OH)2/graphene as a catalyst for hydrogen evolution in microbial electrolysis cell. Fuel 174:251–256. doi:10.1016/j.fuel.2016.02.013

    Article  CAS  Google Scholar 

  25. Chen Y, Xu Y, Chen L, Li P, Zhu S, Shen S (2015) Microbial electrolysis cells with polyaniline/multi-walled carbon nanotube-modified biocathodes. Energy 88:377–384. doi:10.1016/j.energy.2015.05.057

    Article  CAS  Google Scholar 

  26. Wang Y, Fang B, Li H, Bi XT, Wang H (2016) Progress in modified carbon support materials for Pt and Pt-alloy cathode catalysts in polymer electrolyte membrane fuel cells. Prog Mater Sci 82:445–498. doi:10.1016/j.pmatsci.2016.06.002

    Article  CAS  Google Scholar 

  27. Oliveira V, Simões M, Melo L, Pinto A (2013) Overview on the developments of microbial fuel cells. Biochem Eng J 73:53–64. doi:10.1016/j.bej.2013.01.012

    Article  Google Scholar 

  28. Watson VJ, Delgado CN, Logan BE (2013) Improvement of activated carbons as oxygen reduction catalysts in neutral solutions by ammonia gas treatment and their performance in microbial fuel cells. J Power Sources 242:756–761. doi:10.1016/j.jpowsour.2013.05.135

    Article  CAS  Google Scholar 

  29. Singh S, Verma N (2015) Graphitic carbon micronanofibers asymmetrically dispersed with alumina-nickel nanoparticles: a novel electrode for mediatorless microbial fuel cells. Int J Hydrogen Energ 40:5928–5938. doi:10.1016/j.ijhydene.2015.03.010

    Article  CAS  Google Scholar 

  30. Yen SJ, Tsai MC, Wang ZC, Peng HL, Tsai CH, Yew TR (2013) The improvement of catalytic efficiency by optimizing Pt on carbon cloth as a cathode of a microbial fuel cell. Electrochim Acta 108:241–247. doi:10.1016/j.electacta.2013.06.019

    Article  CAS  Google Scholar 

  31. Ando T, Izhar S, Tominaga H, Nagai M (2009) Ammonia-treated carbon-supported cobalt tungsten as fuel cell cathode catalyst. Electrochim Acta 55(8):2614–2621. doi:10.1016/j.electacta.2009.12.039

    Article  Google Scholar 

  32. Liu G, Li X, Ganesan P, Popov BN (2010) Studies of oxygen reduction reaction active sites and stability of nitrogen-modified carbon composite catalysts for PEM fuel cells. Electrochim Acta 55(8):2853–2858. doi:10.1016/j.electacta.2009.12.055

    Article  CAS  Google Scholar 

  33. Siegert M, Yates MD, Call DF, Zhu X, Spromann A, Logan BE (2014) Comparison of nonprecious metal cathode materials for methane production by electromethanogenesis. ACS Sustainable Chem Eng 2(4):910–917. doi:10.1021/sc400520x

    Article  CAS  Google Scholar 

  34. Sangeetha T, Guo Z, Liu W, Cui M, Yang C, Wang L, Wang A (2016) Cathode material as an influencing factor on beer wastewater treatment and methane production in a novel integrated upflow microbial electrolysis cell (Upflow-MEC). Int J Hydrogen Energ 41(4):2189–2196. doi:10.1016/j.ijhydene.2015.11.111

    Article  CAS  Google Scholar 

  35. Cheng S, Logan BE (2007) Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem Commun 9:492–496. doi:10.1016/j.elecom.2006.10.023

    Article  Google Scholar 

  36. Ullery ML, Logan BE (2015) Anode acclimation methods and their impact on microbial electrolysis cells treating fermentation effluent. Int J Hydrogen Energ 40:6782–6791. doi:10.1016/j.ijhydene.2015.03.101

    Article  CAS  Google Scholar 

  37. Kim DH, Song YC, Feng Q (2015) Influence of applied voltage for bioelectrochemical anaerobic digestion of sewage sludge. J Korean Soc Environ Eng 37:542–549. doi:10.4491/KSEE.2015.37.9.542

    Article  Google Scholar 

  38. Woo JH, Song YC (2010) Influence of temperature and duration of heat treatment used for anaerobic seed sludge on biohydrogen fermentation. KSCE J Civ Eng 14:141–147. doi:10.1007/s12205-010-0141-5

    Article  Google Scholar 

  39. Kim KS, Park SJ (2012) Bridge effect of carbon nanotubes on the electrical properties of expanded graphite/poly (ethylene terephthalate) nanocomposites. Carbon Lett 13:51–55. doi:10.5714/CL.2012.13.1.051

    Article  Google Scholar 

  40. Kalakonda P, Cabrera Y, Judith R, Georgiev GY, Cebe P, Iannacchione GS (2015) Studies of electrical and thermal conductivities of sheared multi-walled carbon nanotube with isotactic polypropylene polymer composites. Nanomater Nanotechnol 5:2. doi:10.5772/60083

    Google Scholar 

  41. Parot S, Délia M-L, Bergel A (2008) Forming electrochemically active biofilms from garden compost under chronoamperometry. Bioresour Technol 99:4809–4816. doi:10.1016/j.biortech.2007.09.047

    Article  CAS  Google Scholar 

  42. Rolfe MD, Rice CJ, Lucchini S, Pin C, Thompson A, Cameron AD et al (2012) Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation. J Bacteriol 194:686–701. doi:10.1128/JB.06112-11

    Article  CAS  Google Scholar 

  43. Yoon SM, Choi CH, Kim M, Hyun MS, Shin SH, Yi DH, Kim HJ (2007) Enrichment of electrochemically active bacteria using a three-electrode electrochemical cell. J Microbiol Biotechnol 17:110–115

    CAS  Google Scholar 

  44. Cercado B, Cházaro-Ruiz LF, Ruiz V, López-Prieto LDJ, Buitrón G, Razo-Flores E (2013) Biotic and abiotic characterization of bioanodes formed on oxidized carbon electrodes as a basis to predict their performance. Biosens Bioelectron 50:373–381. doi:10.1016/j.bios.2013.06.051

    Article  CAS  Google Scholar 

  45. Cheng Q, Chen Z (2013) The cause analysis of the incomplete semi-circle observed in high frequency region of EIS obtained from TEL-covered pure copper. Int J Electrochem Sci 8:8282–8290

    CAS  Google Scholar 

  46. Quintero OMS, Chaparro WA, Ipaz L, Barco JES, Beltrán FE, Zambrano G (2013) Influence of the microstructure on the electrochemical properties of Al–Cr–N coatings deposited by co-sputtering method from a Cr–Al binary target. Mater Res 16:204–214. doi:10.1590/S1516-14392012005000171

    Article  CAS  Google Scholar 

  47. Yamada Y, Iriyama Y, Abe T, Ogumi Z (2010) Kinetics of electrochemical insertion and extraction of lithium ion at SiO. J Electrochem Soc 157:A26–A30. doi:10.1149/1.3247598

    Article  CAS  Google Scholar 

  48. Ishihara Y, Miyazaki K, Fukutsuka T, Abe T (2014) Kinetics of lithium-ion transfer at the interface between Li4Ti5O12 thin films and organic electrolytes. ECS Electrochem Lett 3:A83–A86. doi:10.1149/2.0011408eel

    Article  CAS  Google Scholar 

  49. Feng Q, Song YC, Yoo K, Lal B, Kuppanan N, Subudhi S, Choi TS (2016) Performance of upflow anaerobic bioelectrochemical reactor compared to the sludge blanket reactor for acidic distillery wastewater treatment. J Korean Soc Environ Eng 38(6):279–290. doi:10.4491/KSEE.2016.38.6.279

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government (MSIP) (No. 2014R1A2A1A11054448).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Chae Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Q., Song, YC. Decoration of graphite fiber fabric cathode with electron transfer assisting material for enhanced bioelectrochemical methane production. J Appl Electrochem 46, 1211–1219 (2016). https://doi.org/10.1007/s10800-016-1003-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-016-1003-8

Keywords

Navigation