Journal of Applied Electrochemistry

, Volume 46, Issue 9, pp 975–985

Photovoltaic study of quantum dot-sensitized TiO2/CdS/ZnS solar cell with P3HT or P3OT added

  • Andrea Cerdán-Pasarán
  • Diego Esparza
  • Isaac Zarazúa
  • Manuel Reséndiz
  • Tzarara López-Luke
  • Elder De la Rosa
  • Rosalba Fuentes-Ramírez
  • Alejandro Alatorre-Ordaz
  • Alejandro Martínez-Benítez
Research Article
Part of the following topical collections:
  1. Solar Cells

Abstract

Within the body of research aimed at improving the photovoltaic performance of quantum dot-sensitized solar cells (QDSSC), poly-3-alkyl thiophenes have been commonly used in hybrid photovoltaic devices. The roles of poly(3-hexylthiophene) (P3HT) and of poly(3-octylthiophene) (P3OT) on hybrid QDSSC were investigated in the present work. To this end, CdS and ZnS QDs were deposited by successive ionic layer adsorption and reaction method on TiO2 mesoporous film. The polymers were added by drop-casting method giving the configurations TiO2/CdS/ZnS/P3HT and TiO2/CdS/ZnS/P3OT. Results showed that the polymer covers the TiO2/CdS/ZnS surface enough to protect it from contact with the polysulfide electrolyte, while electrochemical impedance spectroscopy measurements indicated that when P3HT and P3OT were employed, the recombination resistance increased and the transport resistance decreased, causing the improvement of the open circuit voltage and fill factor, respectively.

Graphical Abstract

Keywords

P3HT P3OT Hybrid quantum dot-sensitized solar cells CdS TiO2 

References

  1. 1.
    Parida B, Iniyan S, Goic R (2011) A review of solar photovoltaic technologies. Renew Sustain Energy Rev 15:1625–1636. doi:10.1016/j.rser.2010.11.032 CrossRefGoogle Scholar
  2. 2.
    Panwar NL, Kaushik SC, Kothari S (2011) Role of renewable energy sources in environmental protection: a review. Renew Sustain Energy Rev 15:1513–1524. doi:10.1016/j.rser.2010.11.037 CrossRefGoogle Scholar
  3. 3.
    Saunders BR, Turner ML (2008) Nanoparticle-polymer photovoltaic cells. Adv Colloid Interface Sci 138:1–23. doi:10.1016/j.cis.2007.09.001 CrossRefGoogle Scholar
  4. 4.
    Zhu H, Wei J, Wang K, Wu D (2009) Applications of carbon materials in photovoltaic solar cells. Sol Energy Mater Sol Cells 93:1461–1470. doi:10.1016/j.solmat.2009.04.006 CrossRefGoogle Scholar
  5. 5.
    Xiao T, Fungura F, Cai M et al (2013) Improved efficiency and stability of inverted polymer solar cells with a solution-processed BPhen interlayer and polystyrene beads. Org Electron physics, Mater Appl 14:2555–2563. doi:10.1016/j.orgel.2013.06.019 Google Scholar
  6. 6.
    Manoharan D, Chandrasekaran J, Maruthamuthu S, Jayamurugan P (2015) Poly(aniline-co-o-toluidine):poly(styrene sulfonic acid) nanocolloidal self assembled multilayer thin films as a hole transport layer in organic solar cells. Mater Sci Semicond Process 34:382–389. doi:10.1016/j.mssp.2015.02.079 CrossRefGoogle Scholar
  7. 7.
    Robel I, Subramanian V, Kuno M, Kamat PV (2006) Quantum dot solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. J Am Chem Soc 128:2385–2393. doi:10.1021/ja056494n CrossRefGoogle Scholar
  8. 8.
    Rühle S, Shalom M, Zaban A (2010) Quantum-dot-sensitized solar cells. ChemPhysChem 11:2290–2304. doi:10.1002/cphc.201000069 CrossRefGoogle Scholar
  9. 9.
    Kamat PV (2007) Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J Phys Chem C 111:2834–2860. doi:10.1021/jp066952u CrossRefGoogle Scholar
  10. 10.
    Kouhnavard M, Ikeda S, Ludin NA et al (2014) A review of semiconductor materials as sensitizers for quantum dot-sensitized solar cells. Renew Sustain Energy Rev 37:397–407. doi:10.1016/j.rser.2014.05.023 CrossRefGoogle Scholar
  11. 11.
    Goh C, Scully SR, McGehee MD (2007) Effects of molecular interface modification in hybrid organic-inorganic photovoltaic cells. J Appl Phys. doi 10(1063/1):2737977Google Scholar
  12. 12.
    Antoniadou M, Stathatos E, Boukos N et al (2009) Study of hybrid solar cells made of multilayer nanocrystalline titania and poly(3-octylthiophene) or poly-(3-(2-methylhex-2-yl)-oxy-carbonyldithiophene). Nanotechnology 20:495201. doi:10.1088/0957-4484/20/49/495201 CrossRefGoogle Scholar
  13. 13.
    Luo J, Liu C, Yang S, Cao Y (2010) Hybrid solar cells based on blends of poly(3-hexylthiophene) and surface dye-modified, ultrathin linear- and branched-TiO2 nanorods. Sol Energy Mater Sol Cells 94:501–508. doi:10.1016/j.solmat.2009.11.013 CrossRefGoogle Scholar
  14. 14.
    Cappel UB, Dowland SA, Reynolds LX et al (2013) Charge generation dynamics in CdS:P3HT blends for hybrid solar cells. J Phys Chem Lett 4:4253–4257. doi:10.1021/jz402382e CrossRefGoogle Scholar
  15. 15.
    Günes S, Sariciftci NS (2008) Hybrid solar cells. Inorganica Chim Acta 361:581–588. doi:10.1016/j.ica.2007.06.042 CrossRefGoogle Scholar
  16. 16.
    Martinez L, Stavrinadis A, Higuchi S et al (2013) Hybrid solution-processed bulk heterojunction solar cells based on bismuth sulfide nanocrystals. Phys Chem Chem Phys 15:5482–5487. doi:10.1039/c3cp50599e CrossRefGoogle Scholar
  17. 17.
    Wright M, Uddin A (2012) Organic-inorganic hybrid solar cells: a comparative review. Sol Energy Mater Sol Cells 107:87–111. doi:10.1016/j.solmat.2012.07.006 CrossRefGoogle Scholar
  18. 18.
    Kim JP, Christians JA, Choi H et al (2014) CdSeS nanowires: compositionally controlled band gap and exciton dynamics. J Phys Chem Lett 5:1103–1109. doi:10.1021/jz500280g CrossRefGoogle Scholar
  19. 19.
    Esparza D, Zarazúa I, López-Luke T et al (2015) Effect of Different Sensitization Technique on the Photoconversion Efficiency of CdS Quantum Dot and CdSe Quantum Rod Sensitized TiO 2 Solar Cells. J Phys Chem C 119:13394–13403. doi:10.1021/acs.jpcc.5b01525 CrossRefGoogle Scholar
  20. 20.
    Lopez-Luke T, Wolcott A, Xu LP et al (2008) Nitrogen-Doped and CdSe Quantum-Dot-Sensitized Nanocrystalline TiO2 Films for Solar Energy Conversion Applications. J Phys Chem C 112:1282–1292. doi:10.1021/jp077345p CrossRefGoogle Scholar
  21. 21.
    Parsi Benehkohal N, González-Pedro V, Boix PP et al (2012) Colloidal PbS and PbSeS quantum dot sensitized solar cells prepared by electrophoretic deposition. J Phys Chem C 116:16391–16397. doi:10.1021/jp3056009 CrossRefGoogle Scholar
  22. 22.
    Yu WW, Qu L, Guo W, Peng X (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 15:2854–2860. doi:10.1021/cm034081k CrossRefGoogle Scholar
  23. 23.
    Shabaev A, Efros AL, Nozik AJ (2006) Multiexciton generation by a single photon in nanocrystals. Nano Lett 6:2856–2863. doi:10.1021/nl062059v CrossRefGoogle Scholar
  24. 24.
    Beard MC, Knutsen KP, Yu P et al (2007) Multiple exciton generation in colloidal silicon nanocrystals. Nano Lett 7:2506–2512. doi:10.1021/nl071486l CrossRefGoogle Scholar
  25. 25.
    Sambur JB, Novet T, Parkinson BA (2010) Multiple exciton collection in a sensitized photovoltaic system. Science 330:63–66. doi:10.1126/science.1191462 CrossRefGoogle Scholar
  26. 26.
    Hanna MC, Nozik AJ (2006) Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J Appl Phys. doi 10(1063/1):2356795Google Scholar
  27. 27.
    Kamat PV (2013) Quantum dot solar cells. The Next Big Thing in Photovoltaics. J Phys Chem Lett 4:908–918. doi:10.1021/jz400052e CrossRefGoogle Scholar
  28. 28.
    Zhao K, Pan Z, Mora-Seró I et al (2015) Boosting Power Conversion Efficiencies of Quantum-Dot-Sensitized Solar Cells Beyond 8% by Recombination Control. J Am Chem Soc 150416094653008:5602–5609. doi:10.1021/jacs.5b01946 CrossRefGoogle Scholar
  29. 29.
    Kongkanand A, Tvrdy K, Takechi K et al (2008) Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe–TiO2 architecture. J Am Chem Soc 130:4007–4015. doi:10.1021/ja0782706 CrossRefGoogle Scholar
  30. 30.
    Mor GK, Shankar K, Paulose M et al (2006) Use of highly-ordered TiO 2 nanotube arrays in dye-sensitized solar cells. Nano Lett 6:215–218. doi:10.1021/nl052099j CrossRefGoogle Scholar
  31. 31.
    Badawi A, Al-Hosiny N, Abdallah S et al (2013) Tuning photocurrent response through size control of CdTe quantum dots sensitized solar cells. Sol Energy 88:137–143. doi:10.1016/j.solener.2012.11.005 CrossRefGoogle Scholar
  32. 32.
    Zarazúa I, De La Rosa E, López-Luke T et al (2011) Photovoltaic conversion enhancement of CdSe quantum dot-sensitized TiO2 decorated with Au nanoparticles and P3OT. J Phys Chem C 115:23209–23220. doi:10.1021/jp207744n CrossRefGoogle Scholar
  33. 33.
    Chou C-Y, Lee C-P, Vittal R, Ho K-C (2011) Efficient quantum dot-sensitized solar cell with polystyrene-modified TiO2 photoanode and with guanidine thiocyanate in its polysulfide electrolyte. J Power Sources 196:6595–6602. doi:10.1016/j.jpowsour.2011.03.084 CrossRefGoogle Scholar
  34. 34.
    Yeh M-H, Lin L-Y, Lee C-P et al (2013) High performance CdS quantum-dot-sensitized solar cells with Ti-based ceramic materials as catalysts on the counter electrode. J Power Sources 237:141–148. doi:10.1016/j.jpowsour.2013.02.092 CrossRefGoogle Scholar
  35. 35.
    Jun HK, Careem MA, Arof AK (2013) Quantum dot-sensitized solar cells-perspective and recent developments: a review of Cd chalcogenide quantum dots as sensitizers. Renew Sustain Energy Rev 22:148–167. doi:10.1016/j.rser.2013.01.030 CrossRefGoogle Scholar
  36. 36.
    Esparza D, Oliva J, López-Luke T et al (2015) Current improvement in hybrid quantum dot sensitized solar cells by increased light-scattering with a polymer layer. RSC Adv 5:36140–36148. doi:10.1039/C5RA03280F CrossRefGoogle Scholar
  37. 37.
    Qiao Q, Beck J, Lumpkin R et al (2006) A comparison of fluorine tin oxide and indium tin oxide as the transparent electrode for P3OT/TiO2 solar cells. Sol Energy Mater Sol Cells 90:1034–1040. doi:10.1016/j.solmat.2005.05.020 CrossRefGoogle Scholar
  38. 38.
    Hao Y, Pei J, Wei Y et al (2010) Efficient semiconductor-sensitized solar cells based on poly(3-hexylthiophene)@CdSe@ZnO core-shell nanorod arrays. J Phys Chem C 114:8622–8625. doi:10.1021/jp911263d CrossRefGoogle Scholar
  39. 39.
    Kim S, Im SH, Kang M et al (2012) Air-stable and efficient inorganic-organic heterojunction solar cells using PbS colloidal quantum dots co-capped by 1-dodecanethiol and oleic acid. Phys Chem Chem Phys 14:14999–15002. doi:10.1039/c2cp43223d CrossRefGoogle Scholar
  40. 40.
    Gollu SR, Sharma R, Srinivas G et al (2015) Incorporation of SiO2 dielectric nanoparticles for performance enhancement in P3HT:PCBM inverted organic solar cells. Org Electron 24:43–50. doi:10.1016/j.orgel.2015.05.017 CrossRefGoogle Scholar
  41. 41.
    Freitas JN, Gonçalves AS, Nogueira AF (2014) A comprehensive review of the application of chalcogenide nanoparticles in polymer solar cells. Nanoscale 6:6371. doi:10.1039/c4nr00868e CrossRefGoogle Scholar
  42. 42.
    Ren S, Chang L-Y, Lim S-K et al (2011) Inorganic-organic hybrid solar cell: bridging quantum dots to conjugated polymer nanowires. Nano Lett 11:3998–4002. doi:10.1021/nl202435t CrossRefGoogle Scholar
  43. 43.
    Xiao X, Wang Z, Hu Z, He T (2010) Single crystals of polythiophene with different molecular conformations obtained by tetrahydrofuran vapor annealing and controlling solvent evaporation. J Phys Chem B 114:7452–7460. doi:10.1021/jp911525d CrossRefGoogle Scholar
  44. 44.
    Huang H-L, Lee C-T, Lee H-Y (2015) Performance improvement mechanisms of P3HT:PCBM inverted polymer solar cells using extra PCBM and extra P3HT interfacial layers. Org Electron 21:126–131. doi:10.1016/j.orgel.2015.03.012 CrossRefGoogle Scholar
  45. 45.
    Mora-Seró I, Giménez S, Fabregat-Santiago F et al (2009) Recombination in quantum dot sensitized solar cells. Acc Chem Res 42:1848–1857. doi:10.1021/ar900134d CrossRefGoogle Scholar
  46. 46.
    Guijarro N, Campiña JM, Shen Q et al (2011) Uncovering the role of the ZnS treatment in the performance of quantum dot sensitized solar cells. Phys Chem Chem Phys 13:12024–12032. doi:10.1039/c1cp20290a CrossRefGoogle Scholar
  47. 47.
    Shen Q, Kobayashi J, Diguna LJ, Toyoda T (2008) Effect of ZnS coating on the photovoltaic properties of CdSe quantum dot-sensitized solar cells. J Appl Phys. doi 10(1063/1):2903059Google Scholar
  48. 48.
    Chen S, Paulose M, Ruan C et al (2006) Electrochemically synthesized CdS nanoparticle-modified TiO2 nanotube-array photoelectrodes: preparation, characterization, and application to photoelectrochemical cells. J Photochem Photobiol A Chem 177:177–184. doi:10.1016/j.jphotochem.2005.05.023 CrossRefGoogle Scholar
  49. 49.
    Wu Z, Zhao G, Zhang YN et al (2012) Enhanced photocurrent responses and antiphotocorrosion performance of Cds hybrid derived from triple heterojunction. J Phys Chem C 116:12829–12835. doi:10.1021/jp300374s CrossRefGoogle Scholar
  50. 50.
    Jung SW, Kim JH, Kim H et al (2012) ZnS overlayer on in situ chemical bath deposited CdS quantum dot-assembled TiO 2 films for quantum dot-sensitized solar cells. Curr Appl Phys 12:1459–1464. doi:10.1016/j.cap.2012.04.012 CrossRefGoogle Scholar
  51. 51.
    Cerdán A, López-Luke T, Esparza D et al (2015) Photovoltaic Properties of Multilayered Quantum Dot/Quantum Rod-Sensitized TiO2 Solar Cells fabricated by SILAR and Electrophoresis. Phys Chem Chem Phys. doi:10.1039/C5CP02541A Google Scholar
  52. 52.
    Fabregat-Santiago F, Randriamahazaka H, Zaban A et al (2006) Chemical capacitance of nanoporous-nanocrystalline TiO2 in a room temperature ionic liquid. Phys Chem Chem Phys 8:1827–1833. doi:10.1039/b600452k CrossRefGoogle Scholar
  53. 53.
    Beranek R (2011) (Photo)electrochemical Methods for the Determination of the Band Edge Positions of TiO2-Based Nanomaterials. Adv Phys Chem 2011:1–20. doi:10.1155/2011/786759 CrossRefGoogle Scholar
  54. 54.
    Mora-seró I, Fabregat-santiago F, Denier B et al (2006) Determination of carrier density of ZnO nanowires by electrochemical techniques. Appl Phys Lett 89:126–129. doi:10.1063/1.2390667 CrossRefGoogle Scholar
  55. 55.
    Savagatrup S, Printz AD, Wu H et al (2015) Viability of stretchable poly(3-heptylthiophene) (P3HpT) for organic solar cells and field-effect transistors. Synth Met 203:208–214. doi:10.1016/j.synthmet.2015.02.031 CrossRefGoogle Scholar
  56. 56.
    Galand EM, Kim Y, Mwaura JK et al (2006) Optimization of Narrow Band-Gap Propylenedioxythiophene: cyanovinylene Copolymers for Optoelectronic Applications Optimization of Narrow Band-Gap Propylenedioxythiophene : Cyanovinylene Copolymers for Optoelectronic Applications. Society 39:9132–9142. doi:10.1021/ma061935o Google Scholar
  57. 57.
    Li M, Ni W, Feng H et al (2015) A low bandgap carbazole based small molecule for organic solar cells. Org Electron 24:89–95. doi:10.1016/j.orgel.2015.05.024 CrossRefGoogle Scholar
  58. 58.
    González-Pedro V, Xu X, Mora-Seró I, Bisquert J (2010) Modeling high-efficiency quantum dot sensitized solar cells. ACS Nano 4:5783–5790. doi:10.1021/nn101534y CrossRefGoogle Scholar
  59. 59.
    Fabregat-Santiago F, Garcia-Belmonte G, Mora-Seró I, Bisquert J (2011) Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy. Phys Chem Chem Phys 13:9083–9118. doi:10.1039/c0cp02249g CrossRefGoogle Scholar
  60. 60.
    He C, Zheng Z, Tang H et al (2009) Electrochemical impedance spectroscopy characterization of electron transport and recombination in ZnO nanorod dye-sensitized solar cells. J Phys Chem C 113:10322–10325. doi:10.1021/jp902523c CrossRefGoogle Scholar
  61. 61.
    Lee JK, Jeong BH, Jang SI et al (2009) Preparations of TiO2 pastes and its application to light-scattering layer for dye-sensitized solar cells. J Ind Eng Chem 15:724–729. doi:10.1016/j.jiec.2009.09.053 CrossRefGoogle Scholar
  62. 62.
    Samadpour M, Zad AI, Molaei M (2014) Simply synthesized TiO2 nanorods as an effective scattering layer for quantum dot sensitized solar cells. Chinese Phys B 23:047302. doi:10.1088/1674-1056/23/4/047302 CrossRefGoogle Scholar
  63. 63.
    Tian J, Lv L, Wang X et al (2014) Microsphere light-scattering layer assembled by ZnO nanosheets for the construction of high efficiency (>5%) quantum dots sensitized solar cells. J Phys Chem C 118:16611–16617. doi:10.1021/jp412525k CrossRefGoogle Scholar
  64. 64.
    Itskos G, Papagiorgis P, Tsokkou D et al (2013) Size-dependent charge transfer in blends of Pbs quantum dots with a low-gap silicon-bridged copolymer. Adv Energy Mater 3:1490–1499. doi:10.1002/aenm.201300317 CrossRefGoogle Scholar
  65. 65.
    Unger EL, Hoke ET, Bailie CD et al (2014) Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells. Energy Environ Sci 7:3690–3698. doi:10.1039/C4EE02465F CrossRefGoogle Scholar
  66. 66.
    Meloni S, Moehl T, Tress W et al (2016) Ionic polarization-induced current–voltage hysteresis in CH3NH3PbX3 perovskite solar cells. Nat Commun 7:10334. doi:10.1038/ncomms10334 CrossRefGoogle Scholar
  67. 67.
    Kim HS, Jang IH, Ahn N et al (2015) Control of I-V Hysteresis in CH3NH3PbI3 Perovskite Solar Cell. J Phys Chem Lett 6:4633–4639. doi:10.1021/acs.jpclett.5b02273 CrossRefGoogle Scholar
  68. 68.
    Jeong YJ, Jang J, Song JH et al (2015) Charge transport characterization of PbS quantum dot solids for high efficiency solar cells. J Opt Soc Korea 19:272–276. doi:10.3807/JOSK.2015.19.3.272 CrossRefGoogle Scholar
  69. 69.
    Ruland A, Schulz-Drost C, Sgobba V, Guldi DM (2011) Enhancing photocurrent efficiencies by resonance energy transfer in CdTe quantum dot multilayers: towards rainbow solar cells. Adv Mater 23:4573–4577. doi:10.1002/adma.201101423 CrossRefGoogle Scholar
  70. 70.
    Snaith HJ, Abate A, Ball JM et al (2014) Anomalous Hysteresis in Perovskite Solar Cells. J Phys Chem Lett 5:1511–1515. doi:10.1021/jz500113x CrossRefGoogle Scholar
  71. 71.
    Shao Y, Xiao Z, Bi C et al (2014) Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat Commun 5:1–7. doi:10.1111/j.1365-2230.2009.03702.x Google Scholar
  72. 72.
    Hod I, González-Pedro V, Tachan Z et al (2011) Dye versus quantum dots in sensitized solar cells: participation of quantum dot absorber in the recombination process. J Phys Chem Lett 2:3032–3035. doi:10.1021/jz201417f CrossRefGoogle Scholar
  73. 73.
    De La Fuente MS, Sánchez RS, González-Pedro V et al (2013) Effect of organic and inorganic passivation in quantum-dot-sensitized solar cells. J Phys Chem Lett 4:1519–1525. doi:10.1021/jz400626r CrossRefGoogle Scholar
  74. 74.
    Parlak EA (2012) The blend ratio effect on the photovoltaic performance and stability of poly (3-hexylthiophene):[6,6]-phenyl-C61 butyric acid methyl ester (PCBM) and poly(3-octylthiophene):PCBM solar cells. Sol Energy Mater Sol Cells 100:174–184. doi:10.1016/j.solmat.2012.01.011 CrossRefGoogle Scholar
  75. 75.
    Arenas MC, Mendoza N, Cortina H et al (2010) Influence of poly3-octylthiophene (P3OT) film thickness and preparation method on photovoltaic performance of hybrid ITO/CdS/P3OT/Au solar cells. Sol Energy Mater Sol Cells 94:29–33. doi:10.1016/j.solmat.2009.04.013 CrossRefGoogle Scholar
  76. 76.
    Manceau M, Rivaton A, Gardette JL et al (2009) The mechanism of photo- and thermooxidation of poly(3-hexylthiophene) (P3HT) reconsidered. Polym Degrad Stab 94:898–907. doi:10.1016/j.polymdegradstab.2009.03.005 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Andrea Cerdán-Pasarán
    • 1
    • 2
  • Diego Esparza
    • 1
  • Isaac Zarazúa
    • 1
    • 3
  • Manuel Reséndiz
    • 1
    • 4
  • Tzarara López-Luke
    • 1
  • Elder De la Rosa
    • 1
  • Rosalba Fuentes-Ramírez
    • 2
  • Alejandro Alatorre-Ordaz
    • 2
  • Alejandro Martínez-Benítez
    • 1
  1. 1.Centro de Investigaciones en ÓpticaLeónMexico
  2. 2.División de Ciencias Naturales y ExactasUniversidad de GuanajuatoGuanajuatoMexico
  3. 3.Institute of Advanced MaterialsUniversitat Jaume ICastellóSpain
  4. 4.Universidad Tecnológica del Estado de Querétaro (UTEQ)Santiago De QuerétaroMexico

Personalised recommendations