A lithium–tellurium rechargeable battery with exceptional cycling stability


A Li–Te rechargeable cell with exceptionally high specific capacity and cycling stability at high charge/discharge rates is presented. The cell was composed of a Te/mesoporous carbon CMK-3 composite positive electrode and a Li metal negative electrode. The Te/CMK-3 electrode was prepared using a melt diffusion process and characterized using scanning electron microscope, X-ray diffraction, and Brunauer–Emmett–Teller surface area analysis. Cyclic voltammograms of the Te/CMK-3 electrode suggested reversible (de)lithiation of Te at 1.63/1.88 VLi+/Li combined with irreversible formation processes. Initial cell cycling for formation process revealed voltage plateaus consistent with the cyclic voltammograms until a stationary capacity of about 400 mA h g−1 at 1C with 100 % coulombic efficiency was reached. Discharge capacities retained 96 % (0.5C), 86 % (1C), 78 % (2C), and 69 % (5C) of the theoretical specific capacity. Long-term cyclability tests involving 1000 charge/discharge cycles at 10C rate delivered an unprecedented specific capacity of 286 mA h g−1 at essentially 100 % coulombic efficiency (85 % capacity retention). The study bears testimony to the favorable high-rate stability of the Li–Te/CMK-3 cell design outperforming previously reported chalcogen-based electrode systems.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Bruce PG, Freunberger SA, Hardwick LJ, Tarascon J-M (2012) Li–O2 and Li–S batteries with high energy storage. Nat Mater 11(1):19–29. doi:10.1038/NMAT3191

    CAS  Article  Google Scholar 

  2. 2.

    Yang Y, Zheng G, Cui Y (2013) Nanostructured sulfur cathodes. Chem Soc Rev 42(7):3018–3032. doi:10.1039/C2CS35256G

    CAS  Article  Google Scholar 

  3. 3.

    Wang C, Wan W, Chen J-T, Zhou H-H, Zhang X-X, Yuan L-X, Huang Y-H (2013) Dual core-shell structured sulfur cathode composite synthesized by a one-pot route for lithium sulfur batteries. J Mater Chem A 1(5):1716–1723. doi:10.1039/C2TA00915C

    CAS  Article  Google Scholar 

  4. 4.

    Zhang J, Yin YX, You Y, Yan Y, Guo YG (2014) A high-capacity tellurium@carbon anode material for lithium-ion batteries. Energ Technol 2(9–10):757–762. doi:10.1002/ente.201402069

    CAS  Article  Google Scholar 

  5. 5.

    Zhang Z, Li Z, Hao F, Wang X, Li Q, Qi Y, Fan R, Yin L (2014) 3D interconnected porous carbon aerogels as sulfur immobilizers for sulfur impregnation for lithium–sulfur batteries with high rate capability and cycling stability. Adv Funct Mater 24(17):2500–2509. doi:10.1002/adfm.201303080

    CAS  Article  Google Scholar 

  6. 6.

    Ding B, Yuan CZ, Shen LF, Xu GY, Nie P, Lai QX, Zhang XG (2013) Chemically tailoring the nanostructure of graphene nanosheets to confine sulfur for high-performance lithium–sulfur batteries. J Mater Chem A 1(4):1096–1101. doi:10.1039/C2ta00396a

    CAS  Article  Google Scholar 

  7. 7.

    Moon S, Jung YH, Jung WK, Jung DS, Choi JW, Kim DK (2013) Encapsulated monoclinic sulfur for stable cycling of Li–S rechargeable batteries. Adv Mater 25(45):6547–6553. doi:10.1002/adma.201303166

    CAS  Article  Google Scholar 

  8. 8.

    Zhou W, Yu Y, Chen H, DiSalvo FJ, Abruña HD (2013) Yolk-shell structure of polyaniline-coated sulfur for lithium–sulfur batteries. J Am Chem Soc 135(44):16736–16743. doi:10.1021/ja409508q

    CAS  Article  Google Scholar 

  9. 9.

    Yang Y, Yu G, Cha JJ, Wu H, Vosgueritchian M, Yao Y, Bao Z, Cui Y (2011) Improving the performance of lithium–sulfur batteries by conductive polymer coating. ACS Nano 5(11):9187–9193. doi:10.1021/nn203436j

    CAS  Article  Google Scholar 

  10. 10.

    Li W, Zheng G, Yang Y, Seh ZW, Liu N, Cui Y (2013) High-performance hollow sulfur nanostructured battery cathode through a scalable, room temperature, one-step, bottom-up approach. Proc Natl Acad Sci 110(18):7148–7153. doi:10.1073/pnas.1220992110

    CAS  Article  Google Scholar 

  11. 11.

    Barchasz C, Mesguich F, Dijon J, Lepretre JC, Patoux S, Alloin F (2012) Novel positive electrode architecture for rechargeable lithium/sulfur batteries. J Power Sources 211:19–26. doi:10.1016/j.jpowsour.2012.03.062

    CAS  Article  Google Scholar 

  12. 12.

    Luo C, Xu Y, Zhu Y, Liu Y, Zheng S, Liu Y, Langrock A, Wang C (2013) Selenium@mesoporous carbon composite with superior lithium and sodium storage capacity. ACS Nano 7(9):8003–8010. doi:10.1021/nn403108w

    CAS  Article  Google Scholar 

  13. 13.

    Abouimrane A, Dambournet D, Chapman KW, Chupas PJ, Weng W, Amine K (2012) A new class of lithium and sodium rechargeable batteries based on selenium and selenium–sulfur as a positive electrode. J Am Chem Soc 134(10):4505–4508. doi:10.1021/ja211766q

    CAS  Article  Google Scholar 

  14. 14.

    Yang CP, Xin S, Yin YX, Ye H, Zhang J, Guo YG (2013) An advanced selenium-carbon cathode for rechargeable lithium–selenium batteries. Angew Chem Int Ed 52(32):8363–8367. doi:10.1002/anie.201303147

    CAS  Article  Google Scholar 

  15. 15.

    Liu Y, Wang J, Xu Y, Zhu Y, Bigio D, Wang C (2014) Lithium–tellurium batteries based on tellurium/porous carbon composite. J Mater Chem A 2(31):12201–12207. doi:10.1039/C4TA02075H

    CAS  Article  Google Scholar 

  16. 16.

    Seo JU, Seong GK, Park CM (2015) Te/C nanocomposites for Li–Te secondary batteries. Sci Rep 5:7969. doi:10.1038/srep07969

    CAS  Article  Google Scholar 

  17. 17.

    Ding N, Chen S-F, Geng D-S, Chien S-W, An T, Hor TSA, Liu Z-L, Yu S-H, Zong Y (2015) Tellurium@ordered macroporous carbon composite and free-standing tellurium nanowire mat as cathode materials for rechargeable lithium–tellurium batteries. Adv Energ Mater 5(8):1401999. doi:10.1002/aenm.201401999

    Article  Google Scholar 

  18. 18.

    Ji X, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat Mater 8(6):500–506. doi:10.1038/NMAT2460

    CAS  Article  Google Scholar 

  19. 19.

    Cotton FA, Wilkinson G, Murillo CA, Bochmann M (1999) Advanced inorganic chemistry, 6th edn. Wiley, New York

    Google Scholar 

  20. 20.

    U.S. Geological Survey (2014) Selenium statistics. In: Kelly TD, Matos GR (comps) Historical statistics for mineral and material commodities in the United States: U.S. Geological Survey. Data Series 140 at http://minerals.usgs.gov/minerals/pubs/historical-statistics/. Accessed 07 July 2014

  21. 21.

    U.S. Geological Survey (2014) Tellurium statistics. In: Kelly TD, Matos GR (comps) Historical statistics for mineral and material commodities in the United States: U.S. Geological Survey. Data Series 140 at http://minerals.usgs.gov/minerals/pubs/historical-statistics/. Accessed 07 July 2014

  22. 22.

    Greim H (2006) The MAK collection for occupational health and safety. vol 22, DFG, Deutsche Forschungsgemeinschaft. doi:10.1002/3527600418.mb1349480vere0022

  23. 23.

    Yu CZ, Fan J, Tian BZ, Zhao DY (2004) Morphology development of mesoporous materials: a colloidal phase separation mechanism. Chem Mater 16(5):889–898. doi:10.1021/Cm035011g

    CAS  Article  Google Scholar 

  24. 24.

    Jun S, Joo SH, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O (2000) Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J Am Chem Soc 122(43):10712–10713. doi:10.1021/Ja002261e

    CAS  Article  Google Scholar 

  25. 25.

    Kovalenko I, Zdyrko B, Magasinski A, Hertzberg B, Milicev Z, Burtovyy R, Luzinov I, Yushin G (2011) A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 334(6052):75–79. doi:10.1126/science.1209150

    CAS  Article  Google Scholar 

  26. 26.

    Joo SH, Choi SJ, Oh I, Kwak J, Liu Z, Terasaki O, Ryoo R (2001) Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 412(6843):169–172. doi:10.1038/35084046

    CAS  Article  Google Scholar 

Download references


We thank Benjamin Paul for his help with SEM. Partial financial support from the Federal Ministry of Education and Research through funding within the “Sino German TU9 network for electromobility” under the grant reference number 16N11929 is gratefully acknowledged.

Author information



Corresponding author

Correspondence to Peter Strasser.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 463 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Koketsu, T., Paul, B., Wu, C. et al. A lithium–tellurium rechargeable battery with exceptional cycling stability. J Appl Electrochem 46, 627–633 (2016). https://doi.org/10.1007/s10800-016-0959-8

Download citation


  • Lithium secondary battery
  • Mesoporous carbon
  • Cathode material
  • Tellurium