Skip to main content
Log in

A microwave autoclave synthesized MnO2/graphene composite as a cathode material for lithium–oxygen batteries

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Graphene sheets (GNS) have been synthesized using a fast and effective microwave autoclave method in which the MnO2 nanoflakes are coated on the GNS in situ to form a composite material. The structures, compositions, and morphologies of the samples were characterized by X-ray diffraction, Raman spectroscopy, thermogravimetric analysis, and electron microscopy. Application of the catalyst cathodes in Li–O2 batteries was also investigated. Compared with GNS cathode, dramatic improvements in the catalytic performance of the composite cathode have been obtained. This superior performance is attributed to the synergistic benefits from the GNS with three-dimensional structure and the MnO2 nanoflakes that cover them. The GNS not only increase the electrical conductivity of the composite cathode but also offer enough space for the tri-phase reaction and to buffer the volume changes during cycling. Due to their intrinsically high catalytic activity, the MnO2 nanoflakes could efficiently boost the oxygen reduction reaction and oxygen evolution reaction, improving the electrocatalytic performance of the MnO2/GNS composite as cathode for Li–O2 batteries.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ottakam Thotiyl MM, Freunberger SA, Peng ZQ, Chen YH, Liu Z, Bruce PG (2013) A stable cathode for the aprotic Li–O2 battery. Nat Mater 12:1050–1056

    Article  CAS  Google Scholar 

  2. Liu QC, Xu JJ, Xu D, Zhang XB (2015) Flexible lithium–oxygen battery based on a recoverable cathode. Nat Commun 6:7892

    Article  CAS  Google Scholar 

  3. Peng ZQ, Freunberger SA, Chen YH, Bruce PG (2012) A reversible and higher-rate Li–O2 battery. Science 337:563–566

    Article  CAS  Google Scholar 

  4. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM (2012) Li–O2 and Li–S batteries with high energy storage. Nat Mater 11:19–29

    Article  CAS  Google Scholar 

  5. Grande L, Paillard E, Hassoun J, Park JB, Lee YJ, Sun YK, Passerini S, Scrosati B (2015) The lithium/air battery: still an emerging system or a practical reality. Adv Mater 27:784–800

    Article  CAS  Google Scholar 

  6. Ma Z, Yuan XX, Li L, Ma ZF, Wilkinson DP, Zhang L, Zhang JJ (2015) A review of cathode materials and structures for rechargeable lithium-air batteries. Energy Environ Sci 8:2144–2198

    Article  CAS  Google Scholar 

  7. Wang HL, Cui LF, Yang Y, Sanchez Casalongue H, Robinson JT, Liang YY, Cui Y, Dai HJ (2010) Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J Am Chem Soc 132:13978–13980

    Article  CAS  Google Scholar 

  8. Fan ZJ, Yan J, Wei T, Zhi LJ, Ning GQ, Li TY, Wei F (2011) Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv Funct Mater 21:2366–2375

    Article  CAS  Google Scholar 

  9. Hu XF, Han XP, Hu YX, Cheng FY, Chen J (2014) ε-MnO2 nanostructures directly grown on Ni foam: a cathode catalyst for rechargeable Li–O2 batteries. Nanoscale 6:3522–3525

    Article  CAS  Google Scholar 

  10. Zhang P, Sun DF, He M, Lang JW, Xu S, Yan XB (2015) Synthesis of porous δ-MnO2 submicron tubes as highly efficient electrocatalyst for rechargeable Li–O2 batteries. ChemSusChem 8:1972–1979

    Article  CAS  Google Scholar 

  11. Débart A, Paterson AJ, Bao JL, Bruce PG (2008) α-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries. Angew Chem Int Ed 47:4521–4524

    Article  Google Scholar 

  12. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286

    Article  CAS  Google Scholar 

  13. Loh KP, Bao QL, Ang PK, Yang JX (2010) The chemistry of graphene. J Mater Chem 20:2277–2289

    Article  CAS  Google Scholar 

  14. Liu CG, Yu ZN, Neff D, Zhamu A, Jang BZ (2010) Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10:4863–4868

    Article  CAS  Google Scholar 

  15. Wang J, Feng CQ, Sun ZQ, Chou SL, Liu HK, Wang JZ (2014) In-situ one-step hydrothermal synthesis of a lead germanate-graphene composite as a novel anode material for lithium–ion batteries. Sci Rep 4:7030

    Article  CAS  Google Scholar 

  16. Hou JB, Shao YY, Ellis MW, Moore RB, Yi BL (2011) Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries. Phys Chem Chem Phys 13:15384–15402

    Article  CAS  Google Scholar 

  17. Xiao J, Mei DH, Li XL, Xu W, Wang DY, Graff GL, Bennett WD, Nie ZM, Saraf LV, Aksay IA, Liu J, Zhang JG (2011) Hierarchically porous graphene as a lithium-air battery electrode. Nano Lett 11:5071–5078

    Article  CAS  Google Scholar 

  18. Sun B, Wang B, Su DW, Xiao LD, Ahn H, Wang GX (2012) Graphene nanosheets as cathode catalysts for lithium-air batteries with an enhanced electrochemical performance. Carbon 50:727–733

    Article  CAS  Google Scholar 

  19. Wu G, Mack NH, Gao W, Ma SG, Zhong RQ, Han JT, Baldwin JK, Zelenay P (2012) Nitrogen-doped graphene-rich catalysts derived from heteroatom polymers for oxygen reduction in nonaqueous lithium–O2 battery cathodes. ACS Nano 6:9764–9776

    Article  CAS  Google Scholar 

  20. Cote LJ, Kim F, Huang JX (2009) Langmuir–Blodgett assembly of graphite oxide single layers. J Am Chem Soc 131:1043–1049

    Article  CAS  Google Scholar 

  21. Zhong C, Wang JZ, Wexler D, Liu HK (2014) Microwave autoclave synthesized multi-layer graphene/single-walled carbon nanotube composites for free-standing lithium–ion battery anodes. Carbon 66:637–645

    Article  CAS  Google Scholar 

  22. Wang JZ, Zhong C, Wexler D, Idris NH, Wang ZX, Chen LQ, Liu HK (2011) Graphene-encapsulated Fe3O4 nanoparticles with 3D laminated structure as superior anode in lithium ion batteries. Chem Eur J 17:661–667

    Article  CAS  Google Scholar 

  23. Lee TT, Hong JR, Lin WC, Hu CC, Wu PW, Li YY (2014) Synthesis of petal-like carbon nanocapsule @ MnO2 core-shell particles and their application in supercapacitors. J Electrochem Soc 161:H598–H605

    Article  CAS  Google Scholar 

  24. Yang CZ, Zhou M, Xu Q (2013) Three-dimensional ordered macroporous MnO2/carbon nanocomposites as high-performance electrodes for asymmetric supercapacitors. Phys Chem Chem Phys 15:19730–19740

    Article  CAS  Google Scholar 

  25. Wang YX, Huang L, Sun LC, Xie SY, Xu GL, Chen SR, Xu YF, Li JT, Chou SL, Dou SX, Sun SG (2012) Facile synthesis of a interleaved expanded graphite-embedded sulphur nanocomposite as cathode of Li–S batteries with excellent lithium storage performance. J Mater Chem 22:4744–4750

    Article  CAS  Google Scholar 

  26. Wang YX, Chou SL, Liu HK, Dou SX (2013) Reduced graphene oxide with superior cycling stability and rate capability for sodium storage. Carbon 57:202–208

    Article  CAS  Google Scholar 

  27. Shi Y, Chou SL, Wang JZ, Li HJ, Liu HK, Wu YP (2013) In-situ hydrothermal synthesis of graphene woven VO2 nanoribbons with improved cycling performance. J Power Sour 244:684–689

    Article  CAS  Google Scholar 

  28. Zhang YJ, Fugane K, Mori T, Niu L, Ye JH (2012) Wet chemical synthesis of nitrogen-doped graphene towards oxygen reduction electrocatalysts without high-temperature pyrolysis. J Mater Chem 22:6575–6580

    Article  CAS  Google Scholar 

  29. Liu YZ, Li YF, Zhong M, Yang YG, Yuefang W, Wang MZ (2011) A green and ultrafast approach to the synthesis of scalable graphene nanosheets with Zn powder for electrochemical energy storage. J Mater Chem 21:15449–15455

    Article  CAS  Google Scholar 

  30. Zhu CZ, Guo SJ, Fang YX, Dong SJ (2010) Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano 4:2429–2437

    Article  CAS  Google Scholar 

  31. Wang XB, Tang HQ, Huang SS, Zhu LH (2014) Fast and facile microwave-assisted synthesis of graphene oxide nanosheets. RSC Adv 4:60102–60105

    Article  CAS  Google Scholar 

  32. Liu XX, Zhan D, Chao DL, Cao BC, Yin JH, Zhao JP, Li Y, Lin JY, Shen ZX (2014) Microwave-assisted production of giant graphene sheets for high performance energy storage applications. J Mater Chem A 2:12166–12170

    Article  CAS  Google Scholar 

  33. Liu S, Zhu Y, Xie J, Huo Y, Yang HY, Zhu T, Cao G, Zhao X, Zhang S (2014) Direct growth of flower-like δ-MnO2 on three-dimensional graphene for high-performance rechargeable Li–O2 batteries. Adv Energy Mater 4:1301960

    Article  Google Scholar 

  34. Zhang P, He M, Xu S, Yan XB (2015) The controlled growth of porous δ-MnO2 nanosheets on carbon fibers as a bi-functional catalyst for rechargeable lithium–oxygen batteries. J Mater Chem A 3:10811–10818

    Article  CAS  Google Scholar 

  35. Zhang J, Guo C, Zhang L, Li CM (2013) Direct growth of flower-like manganese oxide on reduced graphene oxide towards efficient oxygen reduction reaction. Chem Commun 49:6334–6336

    Article  CAS  Google Scholar 

  36. Xia H, Wang Y, Lin JY, Lu L (2012) Hydrothermal synthesis of MnO2/CNT nanocomposite with a CNT core/porous MnO2 sheath hierarchy architecture for supercapacitors. Nanoscale Res Lett 7:33

    Article  Google Scholar 

  37. Li JX, Wang N, Zhao Y, Ding YH, Guan LH (2011) MnO2 nanoflakes coated on multi-walled carbon nanotubes for rechargeable lithium-air batteries. Electrochem Commun 13:698–700

    Article  CAS  Google Scholar 

  38. Liu QC, Xu JJ, Chang ZW, Zhang XB (2014) Direct electrodeposition of cobalt oxide nanosheets on carbon paper as free-standing cathode for Li–O2 battery. J Mater Chem A 2:6081–6085

    Article  CAS  Google Scholar 

  39. Huang BW, Li L, He YJ, Liao XZ, He YS, Zhang W, Ma ZF (2014) Enhanced electrochemical performance of nanofibrous CoO/CNF cathode catalyst for Li–O2 batteries. Electrochim Acta 137:183–189

    Article  CAS  Google Scholar 

  40. Li F, Tang DM, Zhang T, Liao K, He P, Golberg D, Yamada A, Zhou H (2015) Superior performance of a Li–O2 battery with metallic RuO2 hollow spheres as the carbon-free cathode. Adv Energy Mater 5:1500294

    Article  Google Scholar 

  41. Agyeman DA, Song K, Kang SH, Jo MR, Cho E, Kang Y-M (2015) An improved catalytic effect of nitrogen-doped TiO2 nanofibers for rechargeable Li–O2 batteries; the role of oxidation states and vacancies on the surface. J Mater Chem A 3:22557–22563

    Article  CAS  Google Scholar 

  42. Débart A, Bao J, Armstrong G, Bruce PG (2007) An O2 cathode for rechargeable lithium batteries: the effect of a catalyst. J Power Sour 174:1177–1182

    Article  Google Scholar 

  43. Tong SF, Zheng MB, Lu Y, Lin ZX, Li J, Zhang XP, Shi Y, He P, Zhou HS (2015) Mesoporous NiO single-crystalline utilized as noble metal-free catalyst for non-aqueous Li–O2 battery. J Mater Chem A 3:16177–16182

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Jun Wang is grateful to the China Scholarship Council (CSC) for scholarship support. Funding support from the Australian Research Council (ARC) through a Discovery project (DP140100401) is gratefully acknowledged. The authors also acknowledge use of the facilities at the UOW Electron Microscopy Centre. The authors also thank Dr. Tania Silver for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiazhao Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Liu, L., Subramaniyam, C.M. et al. A microwave autoclave synthesized MnO2/graphene composite as a cathode material for lithium–oxygen batteries. J Appl Electrochem 46, 869–878 (2016). https://doi.org/10.1007/s10800-016-0956-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-016-0956-y

Keywords

Navigation