Journal of Applied Electrochemistry

, Volume 46, Issue 5, pp 583–592 | Cite as

Electrocatalytic degradation of organic contaminants using carbon fiber coupled with cobalt phthalocyanine electrode

  • Mengyao Liu
  • Hanchun Xia
  • Wangyang LuEmail author
  • Tiefeng Xu
  • Zhexin Zhu
  • Wenxing Chen
Research Article
Part of the following topical collections:
  1. Remediation


Cobalt tetraaminophthalocyanine was anchored covalently on carbon fiber using an easy and moderate one-step deamination method to obtain a supported heterogeneous catalyst (CoPc-CF). Studies were conducted to understand the CoPc-CF electrode’s electrochemical activity, and some typical organic contaminants including dyes, phenols, and carbamazepine could be removed efficiently in this system. This system exhibited a relatively high electrochemical activity over a wide pH range, and provided a nonradical pathway, which was completely different from the traditional electro-Fenton system. The CoPc-CF electrode has a high electrocatalytic activity over a wide reactant concentration range. Repetitive tests showed that CoPc-CF could maintain a high electrocatalytic activity over several cycles. The content of electrogenerated H2O2 during the electrocatalysis process was determined using a photometric method in which N,N-diethyl-phenylenediamine was oxidized by a peroxidase-catalyzed reaction. The possible reaction mechanism was proposed from an electron paramagnetic resonance spin-trap technique. These results show that the CoPc-CF electrode has potential application in wastewater treatment.

Graphical Abstract


Cobalt tetraaminophthalocyanine Carbon fiber Deamination Electrochemical activity Organic contaminants 



This work was supported by the National Natural Science Foundation of China (Grant numbers: 51133006 and 51103133); the Textile Vision Science & Education Fund; the 521 Talent Project of ZSTU; Zhejiang Provincial Natural Science Foundation of China (Grant numbers: LY14E030013 and LY14E030015); and the Public Welfare Technology Application Research Project of Zhejiang Province (Grant number: 2015C33018).

Supplementary material

10800_2016_939_MOESM1_ESM.docx (2.2 mb)
Supplementary material 1 (DOCX 2222 kb)


  1. 1.
    Oturan MA, Peiroten J, Chartrin P, Acher AJ (2000) Complete destruction of ρ-nitrophenol in aqueous medium by electro-Fenton method. Environ Sci Technol 34:3474–3479CrossRefGoogle Scholar
  2. 2.
    Chen M, Peng K, Wang H, Yang Z, Zeng Q, Xu A (2012) High performance of a simple cobalt(II)-monoethanolamine complex for orange II degradation with H2O2 as an oxidation at ambient conditions. Chem Eng J 197:110–115CrossRefGoogle Scholar
  3. 3.
    Panakoulias T, Kalatzis P, Kalderis D, Katsaounis A (2010) Electrochemical degradation of Reactive Red 120 using DSA and BDD anodes. J Appl Electrochem 40:1759–1765CrossRefGoogle Scholar
  4. 4.
    Zhao G, Cui X, Liu M, Li P, Zhang Y, Cao T, Li H, Lei Y, Liu L, Li D (2009) Electrochemical degradation of refractory pollutant using a novel microstructured TiO2 nanotubes/Sb-doped SnO2 electrode. Environ Sci Technol 43:1480–1486CrossRefGoogle Scholar
  5. 5.
    Moreira FC, Garcia-Segura S, Boaventura RA, Brillas E, Vilar VJ (2014) Degradation of the antibiotic trimethoprim by electrochemical advanced oxidation processes using a carbon-PTFE air-diffusion cathode and a boron-doped diamond or platinum anode. Appl Catal B 160–161:492–505CrossRefGoogle Scholar
  6. 6.
    Zhao X, Li A, Mao R, Liu H, Qu J (2014) Electrochemical removal of haloacetic acids in a three dimensional electrochemical reactor with Pd-GAC particles as fixed filler and Pd-modified carbon paper as cathode. Water Res 51:134–143CrossRefGoogle Scholar
  7. 7.
    Sánchez J, Butter B, Rivas BL, Basáez L, Santander P (2015) Electrochemical oxidation and removal of arsenic using water-soluble polymers. J Appl Electrochem 45:151–159CrossRefGoogle Scholar
  8. 8.
    Park AR, Lee YW, Kwak DH, Roh B, Hwang I, Park KW (2014) Enhanced electrocatalytic activity and stability of PdCo@Pt core-shell nanoparticles for oxygen reduction reaction. J Appl Electrochem 44:1219–1223CrossRefGoogle Scholar
  9. 9.
    Ying J, Wang J, Jia J (2009) Improvement of electrochemical wastewater treatment through mass transfer in a seepage carbon nanotube electrode reactor. Environ Sci Technol 43:3796–3802CrossRefGoogle Scholar
  10. 10.
    Vecitis CD, Gao G, Liu H (2011) Electrochemical carbon nanotube filter for adsorption, desorption, and oxidation of aqueous dyes and anions. J Phys Chem C 115:3621–3629CrossRefGoogle Scholar
  11. 11.
    Neto SA, Andrade AR (2009) Electrochemical degradation of glyphosate formulations at DSA® anodes in chloride medium: an AOX formation study. J Appl Electrochem 39:1863–1870CrossRefGoogle Scholar
  12. 12.
    Hsiao YL, Nobe K (1993) Hydroxylation of chlorobenzene and phenol in a packed bed flow reactor with electrogenerated Fenton’s reagent. J Appl Electrochem 23:943–946CrossRefGoogle Scholar
  13. 13.
    Do JS, Yeh WC (1995) In situ degradation of formaldehyde with electrogenerated hypochlorite ion. J Appl Electrochem 25:483–489CrossRefGoogle Scholar
  14. 14.
    Koparal AS, Yavuz Y, Gürel C, Öğütveren UB (2007) Electrochemical degradation and toxicity reduction of C.I. Basic Red 29 solution and textile wastewater by using diamond anode. J Hazard Mater 145:100–108CrossRefGoogle Scholar
  15. 15.
    Panizza M, Cerisola G (2004) Electrochemical oxidation as a final treatment of synthetic tannery wastewater. Environ Sci Technol 38:5470–5475CrossRefGoogle Scholar
  16. 16.
    Comninellis C, Nerini A (1995) Anodic oxidation of phenol in the presence of NaCl for wastewater treatment. J Appl Electrochem 25:23–28CrossRefGoogle Scholar
  17. 17.
    Wu Z, Zhou M (2001) Partial degradation of phenol by advanced electrochemical oxidation process. Environ Sci Technol 35:2698–2703CrossRefGoogle Scholar
  18. 18.
    Samet Y, Agengui L, Abdelhédi R (2010) Electrochemical degradation of chlorpyrifos pesticide in aqueous solutions by anodic oxidation at boron-doped diamond electrodes. Chem Eng J 161:167–172CrossRefGoogle Scholar
  19. 19.
    Miwa DW, Malpass GRP, Machado ASA, Motheo AJ (2006) Electrochemical degradation of carbrayl on oxide electrodes. Water Res 40:3281–3289CrossRefGoogle Scholar
  20. 20.
    Martínez-Huitle CA, Battisti AD, Ferro S, Reyna S, Cerro-López M, Quiro MA (2008) Removal of the pesticide methamidophos from aqueous solutions by electrooxidation using Pb/PbO2, Ti/SnO2, and Si/BDD electrodes. Environ Sci Technol 42:6929–6935CrossRefGoogle Scholar
  21. 21.
    Li F, Zhou Y, Yang W, Chen G, Yang F (2006) Electrochemical degradation of amaranth aqueous solution on ACF. J Hazard Mater 137:1182–1188CrossRefGoogle Scholar
  22. 22.
    Rodgers JD, Jedral W, Bunce NJ (1999) Electrochemical oxidation of chlorinated phenols. Environ Sci Technol 33:1453–1457CrossRefGoogle Scholar
  23. 23.
    Chen A, Nigro S (2003) Influence of a nanoscale gold thin layer on Ti/Sb2O5 electrodes. J Phys Chem B 107:13341–13348CrossRefGoogle Scholar
  24. 24.
    Reis RM, Valim RB, Rocha RS, Lima AS, Castro PS, Bertotti M, Lanza MRV (2014) The use of copper and cobalt phthalocyanines as electrocatalysts for the oxygen reduction reaction in acid medium. Electrochim Acta 139:1–6CrossRefGoogle Scholar
  25. 25.
    Lu W, Chen W, Li N, Xu M, Yao Y (2009) Oxidative removal of 4-nitrophenol using cativated carbon fiber and hydrogen peroxide to enhance reactivity of metallophthalocyanine. Appl Catal B 87:146–151CrossRefGoogle Scholar
  26. 26.
    Chen S, Lu W, Yao Y, Chen H, Chen W (2014) Oxidative desulfurization of dibenzothiophene with molecular oxygen catalyzed by carbon fiber-supported iron phthalocyanine. Reac Kinet Mech Cat 111:535–547CrossRefGoogle Scholar
  27. 27.
    Achar BN, Fohlen GM, Parker JA, Keshavayya J (1987) Synthesis and structural studies of metal (II) 4, 9, 16, 23-phthalocyanine tetraamines. Polyhedron 6:1463–1467CrossRefGoogle Scholar
  28. 28.
    Bader H, Sturzenegger V, Hoigne J (1988) Photometric method for the determination of low concentrations of hydrogen peroxide by the peroxidase catalyzed oxidation of N, N-diethyl-ρ-phenylenediamine (DPD). Water Res 22(9):1109–1115CrossRefGoogle Scholar
  29. 29.
    Li N, Lu W, Pei K, Chen W (2015) Interfacial peroxidase-like catalytic activity of surface-immobilized cobalt phthalocyanine on multiwall carbon nanotubes. RSC Adv 5:9374–9380CrossRefGoogle Scholar
  30. 30.
    Yi F, Chen S, Yuan C (2008) Effect of activated carbon fiber anode structure and electrolysis conditions on electrochemical degradation of dye wastewater. J Hazard Mater 157(1):79–87CrossRefGoogle Scholar
  31. 31.
    Georgi A, Schierz A, Trommler U, Horwitz CP, Collons TJ, Kopinke FD (2007) Humic acid modified Fenton reagent for enhancement of the working pH range. Appl Catal B 72:26–36CrossRefGoogle Scholar
  32. 32.
    Wang C, Hu J, Chou W, Kuo Y (2008) Removal of color from real dyeing wastewater by Electro-Fenton technology using a three-dimensional graphite cathode. J Hazard Mater 152:601–606CrossRefGoogle Scholar
  33. 33.
    Brillas E, Calpe JC, Casado J (2000) Mineralization of 2,4-D by advanced electrochemical oxidation processes. Water Res 34(8):2253–2262CrossRefGoogle Scholar
  34. 34.
    Kang S, Liao C, Chen M (2002) Pre-oxidation and coagulation of textile wastewater by the Fenton process. Chemosphere 46:923–928CrossRefGoogle Scholar
  35. 35.
    Doorslaer XV, Heynderickx PM, Demeestere K, Debevere K, Langenhove HV, Dewulf J (2012) TiO2 mediated heterogeneous photocatalytic degradation of moxifloxacin: Operational variables and scavenger study. Appl Catal B 111–112:150–156CrossRefGoogle Scholar
  36. 36.
    Ramirez JH, Duarte FM, Martins FG, Costa CA, Madeira LM (2009) Modelling of the synthetic dye Orange II degradation using Fenton’s reagent: from batch to continuous reactor operation. Chem Eng J 148(2–3):394–404CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Mengyao Liu
    • 1
  • Hanchun Xia
    • 1
  • Wangyang Lu
    • 1
    Email author
  • Tiefeng Xu
    • 1
  • Zhexin Zhu
    • 1
  • Wenxing Chen
    • 1
  1. 1.National Engineering Laboratory for Textile Fiber Materials & Processing Technology (Zhejiang)Zhejiang Sci-Tech UniversityHangzhouChina

Personalised recommendations