Skip to main content

Electrocatalytic behavior of glassy carbon electrode modified with ruthenium nanoparticles and ruthenium film

Abstract

The electrocatalytic behavior of glassy carbon (GC) electrode modified with ruthenium nanoparticles and ruthenium film was studied for electrochemical reduction of nicotinamide adenine dinucleotide (NAD+). The surface of GC electrode was modified via cathodic deposition of nanosized ruthenium at different potentials. Scanning electron microscopy (SEM) images showed two kinds of surface morphologies based on deposition potential: Ru nanoparticles-decorated GC at −0.3 V and Ru film-coated GC at −0.5 V versus Ag/AgCl. The electrochemical behavior of Ru nanoparticles and Ru film-modified GC electrodes in phosphate buffer solution containing NAD+ was investigated using voltammetric techniques. A prominent cathodic peak was observed on bare GC and Ru nanoparticles-modified GC at −1.2 V versus Ag/AgCl which was related to NAD+ reduction. The electrochemical response of Ru film electrode was reversible, exhibiting a reduction peak at ca. −1.0 V and an oxidation peak at ca. −0.55 V which was attributed mainly to the hydrogen evolution reaction. Electrochemical impedance analysis indicated lower charge transfer resistance of Ru film electrode for hydrogen evolution as compared to GC and Ru nanoparticle electrodes. Ru film-modified electrode was found less reactive than the nanoparticles-modified GC electrode for NAD+ reduction reaction due to hydrogen evolution reaction that proceeds exclusively on Ru film.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Harris PJF (2005) New perspectives on the structure of graphitic carbons. Crit Rev Solid State Mater Sci 30:235–253

    CAS  Article  Google Scholar 

  2. 2.

    Van der Linden WE, Dieker JW (1980) Glassy-carbon as electrode material in electroanalytical chemistry. Anal Chim Acta 119:1–24

    Article  Google Scholar 

  3. 3.

    Rusling JF, Kamau GN (1985) Electrocatalytic reactions in organized assemblies. II. Electrocatalytic reduction of allyl chloride by tris(2,2′-Bipyridyl)Cobalt(Ii) in micelles of dodecyl-sulfate. J Electroanal Chem 187:355–359

    CAS  Article  Google Scholar 

  4. 4.

    Thornton DC, Corby KT, Spendel VA, Jordan J, Robbat A Jr, Rutstrom DJ, Gross M, Ritzler G (1985) Pretreatment and validation procedure for glassy-carbon voltammetric indicator electrodes. Anal Chem 57:150–155

    CAS  Article  Google Scholar 

  5. 5.

    Sullivan MG, Schnyder B, Bartsch M, Alliata D, Barbero C, Imhof R, Kotz R (2000) Electrochemically modified glassy carbon for capacitor electrodes characterization of thick anodic layers by cyclic voltammetry, differential electrochemical mass spectrometry, spectroscopic ellipsometry, X-ray photoelectron spectroscopy, FTIR, and AFM. J Electrochem Soc 147:2636–2643

    CAS  Article  Google Scholar 

  6. 6.

    Paixao TRLC, Kosminsky L, Bertotti M (2002) Use of electrochemically pretreated glassy carbon electrodes as pH sensors in potentiometric titrations. Sens Actuators B Chem 87:41–46

    CAS  Article  Google Scholar 

  7. 7.

    Seyfang BC, Kuhnke M, Lippert T, Scherer GG, Wokaun A (2007) A novel, simplified micro-PEFC concept employing glassy carbon micro-structures. Electrochem Commun 9:1958–1962

    CAS  Article  Google Scholar 

  8. 8.

    Tegou A, Papadimitriou S, Valova AE, Kokkinidis G, Sotiropoulos S (2008) Oxygen reduction at platinum- and gold-coated iron, cobalt, nickel and lead deposits on glassy carbon substrates. J Electroanal Chem 623:187–196

    CAS  Article  Google Scholar 

  9. 9.

    Jovanovic VM, Terzic S, Tripkovic AV, Popovic KDJ, Lovic JD (2004) The effect of electrochemically treated glassy carbon on the activity of supported Pt catalyst in methanol oxidation. Electrochem Commun 6:1254–1258

    CAS  Article  Google Scholar 

  10. 10.

    Azem A, Man F, Omanovic S (2004) Direct regeneration of NADH on a ruthenium modified glassy carbon electrode. J Mol Catal A: Chem 219:283–299

    CAS  Article  Google Scholar 

  11. 11.

    Rahman G, Lim JY, Jung KD, Joo OS (2011) Electrodeposited Ru nanoparticles for electrochemical reduction of NAD(+) to NADH. Int J Electrochem Sci 6:2789–2797

    CAS  Google Scholar 

  12. 12.

    Wei C, Huang Q, Hu S, Zhang H, Zhang W, Wang Z, Zhu M, Dai P, Huang L (2014) Simultaneous electrochemical determination of hydroquinone, catechol and resorcinol at Nafion/multi-walled carbon nanotubes/carbon dots/multi-walled carbon nanotubes modified glassy carbon electrode. Electrochim Acta 149:237–244

    CAS  Article  Google Scholar 

  13. 13.

    Jiang YM, Li X, Yu SJ, Jia LP, Zhao XJ, Wang CM (2015) Reduced graphene oxide-modified carbon nanotube/polyimide film supported MoS2 nanoparticles for electrocatalytic hydrogen evolution. Adv Funct Mater 25:2693–2700

    CAS  Article  Google Scholar 

  14. 14.

    Kumar SA, Chen SM (2007) Electrocatalytic reduction of oxygen and hydrogen peroxide at poly (p-aminobenzene sulfonic acid)-modified glassy carbon electrodes. J Mol Catal A 278:244–250

    CAS  Article  Google Scholar 

  15. 15.

    El-Refaei SM, Saleh MM, Awad MI (2013) Enhanced glucose electrooxidation at a binary catalyst of manganese and nickel oxides modified glassy carbon electrode. J Power Sources 223:125–128

    CAS  Article  Google Scholar 

  16. 16.

    El-Deab MS, El-Nagar GA, Mohammad AM, El-Anadouli BE (2015) Fuel blends: enhanced electro-oxidation of formic acid in its blend with methanol at platinum nanoparticles modified glassy carbon electrodes. J Power Sources 286:504–509

    CAS  Article  Google Scholar 

  17. 17.

    Chang G, Shu HH, Ji K, Oyama M, Liu X, He YB (2014) Gold nanoparticles directly modified glassy carbon electrode for non-enzymatic detection of glucose. Appl Surf Sci 288:524–529

    CAS  Article  Google Scholar 

  18. 18.

    Rahman G, Lim JY, Jung KD, Joo OS (2010) NAD+ hydrogenation on Au electrode deposited on modified glassy carbon. Electrochem Commun 12:1371–1374

    CAS  Article  Google Scholar 

  19. 19.

    Ali I, Gill A, Omanovic S (2012) Direct electrochemical regeneration of the enzymatic cofactor 1,4-NADH employing nano-patterned glassy carbon/Pt and glassy carbon/Ni electrodes. Chem Eng J 188:173–180

    CAS  Article  Google Scholar 

  20. 20.

    Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature 409:258–268

    CAS  Article  Google Scholar 

  21. 21.

    Belenky P, Bogan KL, Brenner C (2007) NAD(+) metabolism in health and disease. Trends Biochem Sci 32:12–19

    CAS  Article  Google Scholar 

  22. 22.

    Pariente F, Tobalina F, Darder M, Lorenzo E, Abruna HD (1996) Electrodeposition of redox-active films of dihydroxybenzaldehydes and related analogs and their electrocatalytic activity toward NADH oxidation. Anal Chem 68:3135–3142

    CAS  Article  Google Scholar 

  23. 23.

    Pollak N, Dolle C, Ziegler M (2007) The power to reduce: pyridine nucleotides—small molecules with a multitude of functions. Biochem J 402:205–218

    CAS  Article  Google Scholar 

  24. 24.

    Sauve AA (2008) NAD+ and vitamin B3: from metabolism to therapies. J Pharmacol Exp Ther 324:883–893

    CAS  Article  Google Scholar 

  25. 25.

    Delecouls-Servat K, Bergel A, Basseguy R (2004) Membrane electrochemical reactors (MER) for NADH regeneration in HLADH-catalysed synthesis: comparison of effectiveness. Bioprocess Biosyst Eng 26:205–215

    CAS  Google Scholar 

  26. 26.

    Chenault HK, Whitesides GM (1987) Regeneration of nicotinamide cofactors for use in organic-synthesis. Appl Biochem Biotechnol 14:147–197

    CAS  Article  Google Scholar 

  27. 27.

    Liu WF, Wang P (2007) Cofactor regeneration for sustainable enzymatic biosynthesis. Biotechnol Adv 25:369–384

    CAS  Article  Google Scholar 

  28. 28.

    Jaegfeldt H (1981) A study of the products formed in the electrochemical reduction of nicotinamide-adenine-dinucleotide. Bioelectrochem Bioenergy 8:355–370

    CAS  Article  Google Scholar 

  29. 29.

    Man F, Omanovic S (2004) A kinetic study of NAD+ reduction on a ruthenium modified glassy carbon electrode. J Electroanal Chem 568:301–313

    CAS  Article  Google Scholar 

  30. 30.

    Takamura K, Mori A, Kusu F (1981) Role of adsorption in the electrochemical-behavior of nicotinamide adenine-dinucleotide at a gold electrode. Bioelectrochem Bioenergy 8:229–238

    CAS  Article  Google Scholar 

  31. 31.

    Baik SH, Kang C, Jeon IC, Yun SE (1999) Direct electrochemical regeneration of NADH from NAD+ using cholesterol-modified gold amalgam electrode. Biotechnol Tech 13:1–5

    CAS  Article  Google Scholar 

  32. 32.

    Beley M, Collin JP (1993) Electrochemical regeneration of nicotinamide cofactor using a polypyrrole rhodium bis-terpyridine modified electrode. J Mol Catal 79:133–140

    CAS  Article  Google Scholar 

  33. 33.

    Karyakin AA, Bobrova OA, Karyakina EE (1995) Electroreduction of NAD(+) to enzymatically active NADH at poly(neutral red) modified electrodes. J Electroanal Chem 399:79–184

    Article  Google Scholar 

  34. 34.

    Cheikhou K, Tzedakis T (2008) Electrochemical microreactor for chiral syntheses using the cofactor NADH. AIChE J 54:1365–1376

    CAS  Article  Google Scholar 

  35. 35.

    Chen X, Fenton JM, FIsher RJ, Peattiec RA (2004) Evaluation of in situ electroenzymatic regeneration of coenzyme NADH in packed bed membrane reactors: biosynthesis of lactate. J Electrochem Soc 151:E56–E60

    CAS  Article  Google Scholar 

  36. 36.

    Hollmann F, Schmid A (2004) Electrochemical regeneration of oxidoreductases for cell-free biocatalytic redox reactions. Biocatal Biotransform 22:63–88

    CAS  Article  Google Scholar 

  37. 37.

    Ali I, Khan T, Omanovic S (2014) Direct electrochemical regeneration of the cofactor NADH on bare Ti, Ni, Co and Cd electrodes: the influence of electrode potential and electrode material. J Mol Catal A 387:86–91

    Article  Google Scholar 

  38. 38.

    Ali I, Soomro B, Omanovic S (2011) Electrochemical regeneration of NADH on a glassy carbon electrode surface: the influence of electrolysis potential. Electrochem Commun 13:562–565

    CAS  Article  Google Scholar 

  39. 39.

    Losiewicz B, Martin M, Lebouin C, Lasia A (2010) Kinetics of hydrogen underpotential deposition at ruthenium in acidic solutions. J Electroanal Chem 649:198–205

    CAS  Article  Google Scholar 

  40. 40.

    Breiter MW (1984) Hydrogen evolution and dissolution on smooth ruthenium in sulfuric-acid-solution. J Electroanal Chem 178:53–59

    CAS  Article  Google Scholar 

  41. 41.

    Magdic K, Kvastek K, Horvat-Radosevic V (2015) Impedance approach to activity of hydrogen evolution reaction on spatially heterogeneous GC electrode surfaces: metal free vs Ru catalysed case. Electrochim Acta 167:455–469

    CAS  Article  Google Scholar 

  42. 42.

    Oppedisano DK, Jones LA, Junk T, Bhargava SK (2014) Ruthenium electrodeposition from aqueous solution at high cathodic overpotential. J Electrochem Soc 161:D489–D494

    CAS  Article  Google Scholar 

  43. 43.

    Cicoira F, Hoffmann P, Olsson COA, Xanthopoulos N, Mathieu HJ, Doppelt P (2005) Auger electron spectroscopy analysis of high metal content micro-structures grown by electron beam induced deposition. Appl Surf Sci 242:107–113

    CAS  Article  Google Scholar 

  44. 44.

    Chan HYH, Takoudis CC, Weaver MJ (1997) High-pressure oxidation of ruthenium as probed by surface-enhanced Raman and X-ray photoelectron spectroscopies. J Catal 172:336–345

    CAS  Article  Google Scholar 

  45. 45.

    You JM, Jeon S (2011) Electrocatalytic oxidation of NADH on a glassy carbon electrode modified with MWCNT-Pd nanoparticles and poly 3,4-ethylenedioxypyrrole. Electrochim Acta 56:10077–10082

    CAS  Article  Google Scholar 

  46. 46.

    Rajaram R, Anandhakumar S, Mathiyarasu J (2015) Electrocatalytic oxidation of NADH at low overpotential using nanoporous poly(3,4)-ethylenedioxythiophene modified glassy carbon electrode. J Electroanal Chem 746:75–81

    CAS  Article  Google Scholar 

  47. 47.

    Katekawa E, Maximiano F, Rodrigues LL, Delbem MF, Serrano SHP (1999) Electrochemical oxidation of NADH at a bare glassy carbon electrode in different supporting electrolytes. Anal Chim Acta 385:345–352

    CAS  Article  Google Scholar 

  48. 48.

    Stevens DA, Dahn JR (2003) Electrochemical characterization of the active surface in carbon-supported platinum electrocatalysts for PEM fuel cells. J Electrochem Soc 150:A770–A775

    CAS  Article  Google Scholar 

  49. 49.

    Munoz LD, Bergel A, Feron D, Basseguy R (2010) Hydrogen production by electrolysis of a phosphate solution on a stainless steel cathode. Int J Hydrog Energy 35:8561–8568

    Article  Google Scholar 

  50. 50.

    Takehara K, Ide Y, Nakazato T, Yoza N (1990) On the assignment of the redox peaks observed in phosphate and phosphite solutions at a Pt electrode. J Electroanal Chem 293:285–290

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the research program of Korea Institute of Science and Technology (KIST) Seoul, South Korea.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Gul Rahman or Oh-Shim Joo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rahman, G., Mian, S.A., Shah, A.u.H.A. et al. Electrocatalytic behavior of glassy carbon electrode modified with ruthenium nanoparticles and ruthenium film. J Appl Electrochem 46, 459–468 (2016). https://doi.org/10.1007/s10800-016-0937-1

Download citation

Keywords

  • Electrochemical properties
  • Glassy carbon
  • Ru nanoparticles
  • Ru film
  • Hydrogen evolution, NAD+ reduction
  • NAD+ reduction