Skip to main content

The application of a water-based hybrid polymer binder to a high-voltage and high-capacity Li-rich solid-solution cathode and its performance in Li-ion batteries

Abstract

Uniform cathode films were prepared with a Li-rich solid-solution (Li[Li0.2Ni0.18Co0.03Mn0.58]O2) cathode material and a water-based hybrid polymer binder (TRD202A, JSR, Japan) composed of acrylic polymer and fluoropolymer, carboxymethyl cellulose, and conducting carbon additive. The films exhibited stable charge/discharge cycling performances (average discharge capacity: 260 mAh g−1) when cycled between 4.8 and 2.0 V for 80 cycles. After 80 cycles in the chemical environment of Li-ion cells, a cathode film prepared with the water-based hybrid polymer binder showed longer-term reliability as well as higher electrochemical resistance when compared with a cathode film using the conventional polyvinylidene difluoride binder. Additionally, even without electrochemical pretreatment, the Al2O3 coating on the cathode surfaces improved the cycling stability by preventing the cathode surface from making direct contact with H2O.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Wood IIIDL, Li J, Daniel C (2015) J Power Sources 275:234–242

    Article  CAS  Google Scholar 

  2. Yuca N, Zhao H, Song X, Dogdu MF, Yuan W, Fu Y, Battaglia VS, Xiao X, Liu G (2014) ACS Appl Mater Interfaces 6:17111–17118

    Article  CAS  Google Scholar 

  3. Yabuuchi N, Kinoshita Y, Misaki K, Natsuyama T, Komaba S (2015) J Electrochem Soc 162:A538–A544

    Article  CAS  Google Scholar 

  4. He M, Yuan L-X, Zhang W-X, Hu X-L, Huang Y-H (2011) J Phys Chem C 115:15703–15709

    Article  CAS  Google Scholar 

  5. Mancini M, Nobili F, Tossici R, Mehrens MW, Marassi R (2011) J Power Sources 196:9665–9671

    Article  CAS  Google Scholar 

  6. Komaba S, Yabuuchi N, Ozeki T, Han Z-J, Shimomura K, Yui H, Katayama Y, Miura T (2012) J Phys Chem C 116:1380–1389

    Article  CAS  Google Scholar 

  7. Sun M, Zhong H, Jiao S, Shao H, Zhang L (2014) Electrochim Acta 127:239–244

    Article  CAS  Google Scholar 

  8. Klamor S, Schröder M, Brunklaus G, Niehoff P, Berkemeier F, Schappacher FM, Winter M (2015) Phys Chem Chem Phys 175:632–5641

    Google Scholar 

  9. Solomon GM, Morse EP, Garbo MJ, Milton DK (1996) J Occup Environ Med 38:705–713

    Article  CAS  Google Scholar 

  10. Pinter T, Hof F (2011) Chem Commun 47:12688–12690

    Article  Google Scholar 

  11. Buqa H, Holzapfel M, Krumeich F, Veit C, Novák P (2006) J Power Sources 161:617–622

    Article  CAS  Google Scholar 

  12. Lee J-H, Lee S, Paik U, Choi Y-M (2005) J Power Sources 147:249–255

    Article  CAS  Google Scholar 

  13. Wu Q, Ha S, Prakash J, Dees DW, Lu W (2013) Electrochim Acta 114:1–6

    Article  CAS  Google Scholar 

  14. Prosini PP, Carewska M, Masci A (2015) Solid State Lonics 274:88–93

    Article  CAS  Google Scholar 

  15. Oiu L, Shao Z, Wang D, Wang F, Wang J (2014) Carbohydr Polym 112:532–538

    Article  Google Scholar 

  16. Prosini PP, Cento C, Carewska M, Masci A (2015) Solid State Ionics 274:34–39

    Article  CAS  Google Scholar 

  17. Doberdò I, Löffler N, Laszczynski N, Cericola D, Penazzi N, Bodoardo S, Kim G-T, Passerini S (2014) J Power Sources 248:1000–1006

    Article  Google Scholar 

  18. Soeda K, Yamagata M, Ishikawa M (2015) ECS Trans 64:13–22

    Article  Google Scholar 

  19. Courtel FM, Niketic S, Duguay D, Lebdeh YA, Davidson IJ (2011) J Power Sources 196:2128–2134

    Article  CAS  Google Scholar 

  20. Wang Z, Dupré N, Gaillot A-C, Lestriez B, Martin J-F, Daniel L, Patoux S, Guyomard D (2012) Electrochim Acta 62:77–83

    Article  CAS  Google Scholar 

  21. Li J, Klopsch R, Nowak S, Kunze M, Winter M, Passerini S (2011) J Power Sources 196:7687–7691

    Article  CAS  Google Scholar 

  22. Qiu L, Shao Z, Wang D, Wang W, Wang F, Wang J (2014) Carbohydr Polym 111:588–591

    Article  CAS  Google Scholar 

  23. Thackeray MM, Kang S-H, Johnson CS, Vaughey JT, Benedek R, Hackney SA (2007) J Mater Chem 17:3112–3125

    Article  CAS  Google Scholar 

  24. Armstrong AR, Holzapfel M, Novak P, Johnson CC, Kang S-H, Thackeray MM, Bruce PG (2006) J Am Chem Soc 128:8694–8698

    Article  CAS  Google Scholar 

  25. Numata K, Sakaki C, Yamanaka S (1997) Chem Lett 8:725–726

    Article  Google Scholar 

  26. Lu Z, Dahn JR (2002) J Electrochem Soc 149:A815–A822

    Article  CAS  Google Scholar 

  27. Lu Z, Dahn JR (2002) J Electrochem Soc 149:A778–A791

    Article  CAS  Google Scholar 

  28. Jarvis KA, Deng Z, Allard LF, Manthiram A, Ferreira PJ (2011) Chem Mater 23:3614–3621

    Article  CAS  Google Scholar 

  29. Oh P, Myeong S, Cho W, Lee M-J, Ko M, Jeong HY (2014) J Cho Nano Lett 14:5965–5972

    Article  CAS  Google Scholar 

  30. Yu H, Zhou H (2013) J Phys Chem Lett 4:1268–1280

    Article  CAS  Google Scholar 

  31. Zhang K, Han X, Hu Z, Zhang X, Tao Z (2015) J. Chen. Chem Soc Rev 44:699–728

    Article  CAS  Google Scholar 

  32. Ito A, Li DC, Sato Y, Arao M, Watanabe M, Hatano M, Horie H, Ohsawa Y (2010) J Power Sources 195:567–573

    Article  CAS  Google Scholar 

  33. Watanabe A, Matsumoto F, Fukunishi M, Kobayashi G, Ito A, Hatano M, Ohsawa Y, Sato Y (2012) Electrochemistry 80:561–565

    Article  CAS  Google Scholar 

  34. Ito A, Li D, Ohsawa Y, Sato Y (2008) J Power Sources 183:344–346

    Article  CAS  Google Scholar 

  35. Huang X, Qiao Q, Sun Y, Li F, Wang Y, Ye SJ (2015) Soild Satate Electrochem 19:805–812

    Article  CAS  Google Scholar 

  36. Kaneko S, Xia B, Zhang Q, Fang G, Liu W, Sun H, Matsumoto F, Sato Y, Zheng J, Li D (2014) Electrochemistry 82:438–443

    Article  CAS  Google Scholar 

  37. Zhang X, Belharouak I, Li L, Lei Y, Elam JW, Nie A, Chen X, Yassar RS, Axeibaum RL (2013) Adv Energy Mater 3:1299–1307

    Article  CAS  Google Scholar 

  38. Peralta D, Colin J-F, Boulineau A, Simonin L, Fabre F, Bouvet J, Feydi P, Chakir M, Chapuis M, Patoux S (2015) J Power Sources 280:687–694

    Article  CAS  Google Scholar 

  39. Vu A, Walker LK, Barenõ J, Burrell AK, Bloom I (2015) J Power Sources 280:155–158

    Article  CAS  Google Scholar 

  40. Martha SK, Nanda J, Veith GM, Dudney N (2012) J Power Sources 199:220–226

    Article  CAS  Google Scholar 

  41. Song B, Liu H, Liu Z, Xiao P, Lai MO, Lu L (2013) Sci Rep 3:3094

    Google Scholar 

  42. Pol VG, Li Y, Dogan F, Secor E, Thackeray MM, Abraham DP (2014) J Power Sources 258:46–53

    Article  CAS  Google Scholar 

  43. Zou GS, Yang XK, Wang XY, Ge L, Shu HB, Bai YS, Wu C, Guo HP, Hu L, Yi X (2014) J. Soild State Electrochem 18:1789–1797

    Article  CAS  Google Scholar 

  44. Xu M, Chen ZY, Li LJ, Zhu HL, Zhao QF, Xu L, Peng NF, Gong L (2015) J Power Sources 281:444–454

    Article  CAS  Google Scholar 

  45. Choi M, Ham G, Jin B-S, Lee S-M, Lee YM, Wang G, Kim H-S (2014) J Alloy Compd 606:110–117

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Futoshi Matsumoto.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Notake, K., Gunji, T., Kokubun, H. et al. The application of a water-based hybrid polymer binder to a high-voltage and high-capacity Li-rich solid-solution cathode and its performance in Li-ion batteries. J Appl Electrochem 46, 267–278 (2016). https://doi.org/10.1007/s10800-016-0930-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-016-0930-8

Keywords

  • Lithium ion battery
  • Water-based binder
  • High-capacity cathode material
  • Li-rich solid-solution