Skip to main content

Advertisement

Log in

Examining the effect of Zn dopant on physical properties of nanostructured SnS thin film by using electrodeposition

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Undoped and Zn-doped SnS nanostructures have been successfully synthesized through an electrodeposition process by using SnCl2 and Na2S2O3 as precursors on fluorine-doped tin oxide-coated (FTO) glass substrates with different zinc concentrations. The structure, surface morphology, and the optical properties of the synthesized films are studied. The X-ray diffraction patterns of the SnS nanostructure confirm the orthorhombic structure. Scanning electron microscopy shows thin films with homogeneous and uniform surface as well, by adding Zn ions, morphology of SnS films changed from cubic to rod. Energy dispersive spectroscopy shows presence of Zn in the films. All samples are characterized by UV–Vis reflectance measurement in the wavelength range 500–1200 nm. The energy band gap values, calculated from optical measurement of reflectance, are between 1.46 and 1.49 eV, being suitable for absorbers layers in the photovoltaic applications. Eventually, studying the photocurrent responses of the nanostructures revealed that the Zn-doped SnS nanostructures exhibited better response than the undoped SnS nanostructures.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Memming R (1980) Solar energy conversion by photoelectrochemical processes. Electrochim Acta 25:77–88

    Article  CAS  Google Scholar 

  2. Mathews NR, García CC, Torres IZ (2013) Effect of annealing on structural, optical and electrical properties of pulse electrodeposited tin sulfide films. Mater Sci Semicond Process 16(1):29–37

    Article  CAS  Google Scholar 

  3. Ernst K, Belaidi A, Konenkamp R (2003) Solar cell with extremely thin absorber on highly structured substrate. Semicond Sci Technol 18:475–479

    Article  CAS  Google Scholar 

  4. Ernst K, Engelhardt R, Ellmer K, Kelch C, Muffler HJ, Lux-Steiner MC, Könenkamp R (2001) Contacts to a solar cell with extremely thin CdTe absorber. Thin Solid Films 387(1–2):26–28

    Article  CAS  Google Scholar 

  5. Clément CL, Zaera RT, Ryan MA, Katty A, Hodes G (2005) CdSe-Sensitized p- CuSCN/Nanowire n-ZnO Heterojunctions. Adv Mater 17(12):1512–1515

    Article  CAS  Google Scholar 

  6. Zaera RT, Ryan MA, Katty A, Hodes G, Bastide S, Clément CL (2006) Fabrication and characterization of ZnO nanowires/CdSe/CuSCN eta-solar cell. Chim C R 9(56):717–729

    Article  CAS  Google Scholar 

  7. Larramona G, Choné C, Jacob A, Sakakura D, Delatouche B, Péré D, Bayón R (2006) Nanostructured photovoltaic cell of the type titanium dioxide, cadmium sulfide thin coating, and copper thiocyanate showing high quantum efficiency. Chem Mater 18(6):1688–1696

    Article  CAS  Google Scholar 

  8. Reddy NK, Reddy KTR (2005) SnS films for photovoltaic applications: physical investigations on sprayed SnxSy films. Phys B 368:25–31

    Article  CAS  Google Scholar 

  9. Reddy NK, Reddy KTR (2006) Optical behaviour of sprayed tin sulphide thin films. Mater Res Bull 41(2):414–422

    Article  CAS  Google Scholar 

  10. Devika M, Reddy NK, Ramesh K, Ganesan R, Gunasekhar KR, Gopal ESR, Reddy KR (2007) Thickness effect on the physical properties of evaporated SnS films. Electrochem Soc 154(2):H67–H73

    Article  CAS  Google Scholar 

  11. Nair MTS, Nair PK (1991) Simplified chemical deposition technique for good quality SnS thin films. Semicond Sci Technol 6:132–134

    Article  CAS  Google Scholar 

  12. Niknia F, Jamali-Sheini F, Yousefi R (2015) Photocurrent properties of undoped and Pb-doped SnS nanostructures grown using electrodeposition method. J Electron Mater 44:4734–4739

    Article  CAS  Google Scholar 

  13. Seal M, Singh N, McFarland EW, Baltrusaitis J (2015) Electrochemically deposited Sb and in doped tin sulfide (SnS) photoelectrodes. J Phys Chem C 119:6471–6480

    Article  CAS  Google Scholar 

  14. Hsu HT, Chiang MH, Huang CH, Lin WT, Fu YS, Guo TF (2015) Effects of Ge-and Sb-doping and annealing on the tunable bandgaps of SnS films. Thin Solid Films 584:37–40

    Article  CAS  Google Scholar 

  15. Patel M, Ray A (2014) Magnetron sputtered Cu doped SnS thin films for improved photoelectrochemical and heterojunction solar cells. RSC Adv 4(74):39343–39350

    Article  CAS  Google Scholar 

  16. Kumar KS, Manohari AG, Dhanapandian S, Mahalingam T (2014) Physical properties of spray pyrolyzed Ag-doped SnS thin films for optoelectronic applications. Mater Lett 131:167–170

    Article  CAS  Google Scholar 

  17. Kiruthigaa G, Manoharan C, Bououdina M, Ramalingam S, Raju C (2015) Structural, optical and photocatalytic properties of Ce-doped SnS2 nanoflakes. Solid State Sci 44:32–38

    Article  CAS  Google Scholar 

  18. Mariappan R, Mahalingam T, Ponnuswamya V (2011) Preparation and characterization of electrodeposited SnS thin films. Optik 122:2216–2219

    Article  CAS  Google Scholar 

  19. Sinsermsuksakul P, Chakraborty R, Kim SB, Heald SM, Buonassisi T, Gordon RG (2012) Antimony-doped tin(II) sulfide thin films. Chem Mater 24:4556–4562

    Article  CAS  Google Scholar 

  20. Liu X, Bai H (2013) Hydrothermal synthesis of visible light active zinc-doped tin disulfide photocatalyst for the reduction of aqueous Cr(VI). Powder Technol 237:610–615

    Article  CAS  Google Scholar 

  21. Cheng S, Chen Y, Huang C, Chen G (2006) Characterization of SnS films prepared by constant-current electro-deposition. Thin Solid Films 500:96–100

    Article  CAS  Google Scholar 

  22. Subramanian B, Sanjeeviraja C, Jayachandran M (2001) Cathodic electrodeposition and analysis of SnS films for photoelectrochemical cells. Mater Chem Phys 71:40–46

    Article  CAS  Google Scholar 

  23. Ichimuraa M, Takeuchib K, Onob Y, Araib E (2000) Electrochemical deposition of SnS thin films. Thin Solid Films 361–362:98–101

    Article  Google Scholar 

  24. Lee JH, Lee HY, Kim JH, Park YK (2000) Heat treatment of boron-doped CdS films prepared by chemical bath deposition for solar cell applications. Jpn J Appl Phys 39:1669–1674

    Article  CAS  Google Scholar 

  25. Zainal Z, Hussein MZ, Kassim A, Ghazali A (1997) Electrodeposited SnS thin films from aqueous solution. J Mater Sci Lett 16:1446–1449

    Article  CAS  Google Scholar 

  26. Nozaki H, Onoda M, Sekita M, Kosuda K, Wada T (2005) Variation of lattice dimensions in epitaxial SnS films on MgO(001). J Solid State Chem 178:245–252

    Article  CAS  Google Scholar 

  27. Zhao Y, Zhang Z, Dang H, Liu W (2004) Synthesis of tin sulfide nanoparticles by a modified solution dispersion method. Mater Sci Eng, B 113(2):175–178

    Article  Google Scholar 

  28. Yue GH, Wang W, Wang LS, Wang X, Yan PX, Chen Y, Peng DL (2009) The effect of anneal temperature on physical properties of SnS films. J Alloys Compd 474(1–2):445–449

    Article  CAS  Google Scholar 

  29. Kumar KS, Manoharan C, Dhanapandian S, Manohari AG, Mahalingam T (2014) Effect of indium incorporation on properties of SnS thin films prepared by spray pyrolysis. Optik Int J Light Electron Opt 125(15):3996–4000

    Article  CAS  Google Scholar 

  30. Jamali-Sheini F, Yousefi R, Ali Bakr N, Cheraghizade M, Sookhakian M, Huang NM (2015) Highly efficient photo-degradation of methyl blue and band gap shift of SnS nanoparticles under different sonication frequencies. Mater Sci Semicond Process 32:172–178

    Article  CAS  Google Scholar 

  31. Yousefi R, Cheraghizade M, Jamali-Sheini F, Basirun WJ, Huang NM (2014) Effect of hydrogen gas on the growth process of PbS nanorods grown by a CVD method. Curr Appl Phys 14:1031–1035

    Article  Google Scholar 

  32. Yue GH, Wang LS, Wang X, Chen YZ, Peng DL (2009) Characterization and optical properties of the single crystalline SnS nanowire arrays. Nanoscale Res Lett 4(4):359–363

    Article  CAS  Google Scholar 

  33. Reddy NK, Devika M, Hahn YB, Gunasekhar KR (2013) Impact of chemical treatment on the surface, structure, optical and electrical properties of SnS thin films. Appl Surf Sci 268:317–322

    Article  CAS  Google Scholar 

  34. Cheng S, Hea Y, Chena G (2008) Structure and properties of SnS films prepared by electro-deposition in presence of EDTA. Mater Chem Phys 110:449–453

    Article  CAS  Google Scholar 

  35. Mathews NR (2012) Electrodeposited tin selenide thin films for photovoltaic applications. Sol Energy 86(4):1010–1016

    Article  CAS  Google Scholar 

  36. Nair MTS, Mata CL, GomezDaza O, Nair PK (2003) Copper tin sulfide semiconductor thin films produced by heating SnS–CuS layers deposited from chemical bath. Semicond Sci Technol 18:755–759

    Article  CAS  Google Scholar 

  37. Antunez PD, Torelli DA, Yang F, Rabuffetti FA, Lewis NS, Brutchey RL (2014) Low temperature solution-phase deposition of SnS thin films. Chem Mater 26(19):5444–5446

    Article  CAS  Google Scholar 

Download references

Acknowledgments

F. Jamali-Sheini and R. Yousefi gratefully acknowledge Islamic Azad University, Ahvaz and Masjed-Soleiman Branches, respectively, for their financial supporting in this research work. F. Jamali-Sheini also thanks Advanced Surface Engineering and Nano Materials Research Center, Islamic Azad University, Ahvaz Branch, Ahvaz, Iran, for their instrumentation support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farid Jamali-Sheini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niknia, F., Jamali-Sheini, F. & Yousefi, R. Examining the effect of Zn dopant on physical properties of nanostructured SnS thin film by using electrodeposition. J Appl Electrochem 46, 323–330 (2016). https://doi.org/10.1007/s10800-015-0913-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-015-0913-1

Keywords

Navigation