Journal of Applied Electrochemistry

, Volume 46, Issue 2, pp 149–155 | Cite as

Ionic liquid-based electrolytes for lithium-ion batteries: review of performances of various electrode systems

  • Hassan Srour
  • Léa Chancelier
  • Ewelina Bolimowska
  • Thibaut Gutel
  • Sophie Mailley
  • Hélène Rouault
  • Catherine C. SantiniEmail author
Research Article
Part of the following topical collections:
  1. Batteries


Lithium-ion cells based on Graphite/LiFePO4 (Cgr/LFP), Li4Ti5O12/LiFePO4 (LTO/LFP) and Li4Ti5O12/LiNi1/3Mn1/3Co1/3O2 (LTO/NMC), using [C1C n Im][NTf2]- and [C1C1C n Im][NTf2] (n = 4 and 6)-based electrolytes with different lithium salts such as Li[N(SO2CF3)2] (LiNTf2), Li[N(SO2F)2] (LiFSI) and LiPF6 were tested at 333 K and compared to a commercial carbonate-based electrolyte [EC:DEC][LiPF6]. The impact of different factors such as length of side-alkyl chain on imidazolium ring or its C2-H substitution with CH3 group was studied, and the influence of the presence of organic additives as well as the value of the nominal voltage of the systems, was also reported. Finally, common trends for all these IL-based electrolyte systems were discussed.


Li-ion battery Ionic liquid-based electrolytes Cycling performance 



The authors wish to thank Dr. Karim Zaghib (Institut de recherche d’Hydro-Québec) for LiFSI sample, and Djamel Mourzagh for his technical support.


  1. 1.
    Park J-K (2012) Principles and applications of lithium secondary batteries. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  2. 2.
    Glaize C, Genies S (2013) Lithium batteries and other electrochemical storage systems. Wiley-ISTE, HobokenCrossRefGoogle Scholar
  3. 3.
    Scrosati B, Abraham KM, van Schalkwijk WA, Hassoun J (eds) (2013) Lithium batteries: advanced technologies and applications. Wiley, Hoboken, pp 1–11CrossRefGoogle Scholar
  4. 4.
    Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B (2009) Nat Mater 8:621–629CrossRefGoogle Scholar
  5. 5.
    Diallo A-O, Morgan AB, Len C, Marlair G (2013) Energy Environ Sci 6:699–710CrossRefGoogle Scholar
  6. 6.
    Wasserscheid P, Welton T (2003) Ionic liquids in synthesis, 1st edn. Wiley-VCH, WeinheimGoogle Scholar
  7. 7.
    Smiglak M, Pringle JM, Lu X, Han L, Zhang S, Gao H, MacFarlane DR, Rogers RD (2014) Chem Commun 50:9228–9250CrossRefGoogle Scholar
  8. 8.
    Appetecchi GB, Montanino M, Passerini S (2012) Ionic liquid-based electrolytes for high energy, safer lithium batteries. In: ACS (Ed.) Ionic Liquids: Science and Applications, ACS: WashingtonGoogle Scholar
  9. 9.
    Lewandowski A, Swiderska-Mocek A (2009) J Power Sources 194:601–609CrossRefGoogle Scholar
  10. 10.
    Cho E, Mun J, Chae OB, Kwon OM, Kim H-T, Ryu JH, Kim YG, Oh SM (2012) Electrochem Commun 22:1–3CrossRefGoogle Scholar
  11. 11.
    Garcia B, Lavallee S, Perron G, Michot C, Armand M (2004) Electrochim Acta 49:4583–4588CrossRefGoogle Scholar
  12. 12.
    Peng C, Yang L, Zhang Z, Tachibana K, Yang Y (2007) J Power Sources 173:510–517CrossRefGoogle Scholar
  13. 13.
    Snook GA, Huynh TD, Hollenkamp AF, Best AS (2012) J Electroanal Chem 687:30–34CrossRefGoogle Scholar
  14. 14.
    Bazito FFC, Kawano Y, Torresi RM (2007) Electrochim Acta 52:6427–6437CrossRefGoogle Scholar
  15. 15.
    Olschewski M, Gustus R, Marschewski M, Hoefft O, Endres F (2014) Phys Chem Chem Phys 16:25969–25977CrossRefGoogle Scholar
  16. 16.
    Balducci A, Jeong SS, Kim GT, Passerini S, Winter M, Schmuck M, Appetecchi GB, Marcilla R, Mecerreyes D, Barsukov V, Khomenko V, Cantero I, De Meatza I, Holzapfel M, Tran N (2011) J Power Sources 196:9719–9730CrossRefGoogle Scholar
  17. 17.
    Magna L, Chauvin Y, Niccolai GP, Basset JM (2003) Organometallics 22:4418–4425CrossRefGoogle Scholar
  18. 18.
    Vincent C, Scrosati B (1997) Modern batteries: an introduction to electrochemical power sources, 2nd edn. Butterworth-Heinemann, OxfordGoogle Scholar
  19. 19.
    Winter M, Besenhard JO, Spahr ME, Novak P (1998) Adv Mater 10:725–763CrossRefGoogle Scholar
  20. 20.
    Aurbach D, Zinigrad E, Cohen Y, Teller H (2002) Solid State Ion 148:405–416CrossRefGoogle Scholar
  21. 21.
    Wu F, Xiang J, Li L, Chen J, Tan G, Chen R (2012) J Power Sources 202:322–331CrossRefGoogle Scholar
  22. 22.
    An Y, Zuo P, Cheng X, Liao L, Yin G (2011) Electrochim Acta 56:4841–4848CrossRefGoogle Scholar
  23. 23.
    Holzapfel M, Jost C, Novak P (2004) Chem Commun 18:2098–2099CrossRefGoogle Scholar
  24. 24.
    Holzapfel M, Jost C, Prodi-Schwab A, Krumeich F, Wursig A, Buqa H, Novak P (2005) Carbon 43:1488–1498CrossRefGoogle Scholar
  25. 25.
    Srour H, Rouault H, Santini C (2013) J Electrochem Soc 160:A66–A69CrossRefGoogle Scholar
  26. 26.
    Srour H, Rouault H, Santini CC (2013) J Electrochem Soc 160:A781–A785CrossRefGoogle Scholar
  27. 27.
    Xu K (2004) Chem Rev 104:4303–4417CrossRefGoogle Scholar
  28. 28.
    Seki S, Mita Y, Tokuda H, Ohno Y, Kobayashi Y, Usami A, Watanabe M, Terada N, Miyashiro H (2007) Electrochem Solid State Lett 10:A237–A240CrossRefGoogle Scholar
  29. 29.
    Seki S, Kobayashi Y, Miyashiro H, Ohno Y, Usami A, Mita Y, Kihira N, Watanabe M, Terada N (2006) J Phys Chem B 110:10228–10230CrossRefGoogle Scholar
  30. 30.
    Cai Y, Li Z, Zhang H, Fang Y, Fan X, Liu J (2010) Electrochim Acta 55:4728–4733CrossRefGoogle Scholar
  31. 31.
    Wang X, Dong H, Zhang X, Yu L, Zhang S, Xu Y (2010) Chem Eng Sci 65:6036–6047CrossRefGoogle Scholar
  32. 32.
    Wang S, Li S, Cao Z, Yan T (2010) J Phys Chem C 114:990–995CrossRefGoogle Scholar
  33. 33.
    Martinelli A, Marechal M, Ostlund A, Cambedouzou J (2013) Phys Chem Chem Phys 15:5510–5517CrossRefGoogle Scholar
  34. 34.
    Indris S, Heinzmann R, Schulz M, Hofmann A (2014) J Electrochem Soc 161:A2036–A2041CrossRefGoogle Scholar
  35. 35.
    Myung S-T, Hitoshi Y, Sun Y-K (2011) J Mater Chem 21:9891–9911CrossRefGoogle Scholar
  36. 36.
    Ishikawa M, Sugimoto T, Kikuta M, Ishiko E, Kono M (2006) J Power Sources 162:658–662CrossRefGoogle Scholar
  37. 37.
    Matsui Y, Yamagata M, Murakami S, Saito Y, Higashizaki T, Ishiko E, Kono M, Ishikawa M (2015) J Power Sources 279:766–773CrossRefGoogle Scholar
  38. 38.
    Zinigrad E, Larush-Asraf L, Gnanaraj JS, Sprecher M, Aurbach D (2005) Thermochim Acta 438:184–191CrossRefGoogle Scholar
  39. 39.
    Lux SF, Lucas IT, Pollak E, Passerini S, Winter M, Kostecki R (2012) Electrochem Commun 14:47–50CrossRefGoogle Scholar
  40. 40.
    Pyschik M, Kraft V, Passerini S, Winter M, Nowak S (2014) Electrochim Acta 130:426–430CrossRefGoogle Scholar
  41. 41.
    Reale P, Fernicola A, Scrosati B (2009) J Power Sources 194:182–189CrossRefGoogle Scholar
  42. 42.
    Shaju KM, Rao GVS, Chowdari BVR (2002) Electrochim Acta 48:145–151CrossRefGoogle Scholar
  43. 43.
    Menne S, Kühnel RS, Balducci A (2013) Electrochim Acta 90:641–648CrossRefGoogle Scholar
  44. 44.
    Welton T, Hallett JP (2011) Chem Rev 111:3508–3576CrossRefGoogle Scholar
  45. 45.
    Seki S, Ohno Y, Mita Y, Serizawa N, Takei K, Miyashiro H (2012) ECS Electrochem Lett 1:A77–A79CrossRefGoogle Scholar
  46. 46.
    Swiderska-Mocek A (2014) Electrochim Acta 132:504-511CrossRefGoogle Scholar
  47. 47.
    Guerfi A, Duchesne S, Kobayashi Y, Vijh A, Zaghib K (2008) J Power Sources 175:866–873CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Hassan Srour
    • 1
    • 2
  • Léa Chancelier
    • 1
    • 2
  • Ewelina Bolimowska
    • 1
    • 2
  • Thibaut Gutel
    • 2
  • Sophie Mailley
    • 2
  • Hélène Rouault
    • 2
  • Catherine C. Santini
    • 1
    Email author
  1. 1.UMR 5265 CNRS-C2P2VilleurbanneFrance
  2. 2.CEA, LITENGrenoble Cedex 9France

Personalised recommendations