Skip to main content
Log in

Characterization of iron-modified carbon paste electrodes and their application in As(V) detection

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Here graphite powder modified with iron hydro(oxide) particles was used to prepare carbon paste electrodes for the determination of arsenic (As). The modified material was easily prepared using the slurry method and characterized by Brunauer–Emmett–Teller surface area and pore size distribution, surface charge distribution, point of zero charge, X-ray diffraction, and potentiometric titration. Adsorption experiments with the modified material showed good arsenic removal capacity, even in the presence of NaNO3 salt used as electrolytic media in electrochemical experiments. The detailed physicochemical characterization of the iron-modified carbon paste and the determination of its adsorption capacity allowed the understanding of the arsenic detection process on the electrode surface. The electrochemical detection of As(V) was investigated by differential pulse voltammetry technique using iron-modified carbon paste electrodes. The method was performed based on the stripping oxidation of zero-valent arsenic deposited at the electrode surface after its pre-concentration at −1.10 V for 180 s. The As(V) was reduced on modified electrodes at pH 2.5. Linear calibration curve was achieved for a series of concentrations from 25 to 1000 μg L−1 for a standard solution of As(V) (r 2 = 0.99). Detection limit of 10 μg L−1 can be achieved for As(V). Reproducibility was shown for stripping voltammetry of this species with an RSD (n = 8) of 7.5 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. WHO (2014) Guidelines for drinking-water quality—Volume 1: recommendations. In: WHO. http://www.who.int/water_sanitation_health/dwq/gdwq3rev/en/. Accessed 15 Jan 2014

  2. Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235. doi:10.1016/S0039-9140(02)00268-0

    Article  CAS  Google Scholar 

  3. Hughes MF (2002) Arsenic toxicity and potential mechanisms of action. Toxicol Lett 133:1–16. doi:10.1016/S0378-4274(02)00084-X

    Article  CAS  Google Scholar 

  4. Kapaj S, Peterson H, Liberk K, Bhattacharya P (2006) Human health effects from chronic arsenic poisoning–a review. J Environ Sci Health Part A 41:2399–2428. doi:10.1080/10934520600873571

    Article  CAS  Google Scholar 

  5. Smedley PL, Kinniburgh DG (2002) A review of the source, behavior and distribution of arsenic in natural waters. Appl Geochem 17:517–568. doi:10.1016/S0883-2927(02)00018-5

    Article  CAS  Google Scholar 

  6. Litter M, Armienta M, Farías S (2009) Metodologías analíticas para la detección y especiación de arsénico en aguas y suelos. CYTED, Argentina

    Google Scholar 

  7. Shin SH, Hong HG (2010) Anodic stripping voltammetric detection of arsenic(III) at platinum-iron(III) nanoparticle modified carbon nanotube on glassy carbon electrode. Bull Korean Chem Soc 31:3077–3083. doi:10.5012/bkcs.2010.31.11.3077

    Article  CAS  Google Scholar 

  8. Vaclavikova M, Gallios GP, Hredzak S, Jakabsky S (2007) Removal of arsenic from water streams: an overview of available techniques. Clean Technol Environ Policy 10:89–95. doi:10.1007/s10098-007-0098-3

    Article  Google Scholar 

  9. Nam SH, Kim J, Hang SS (2003) Direct determination of total arsenic and arsenic species by ion chromatography coupled with inductively coupled plasma mass spectrometry. Bull Korean Chem Soc 24:1805–1808. doi:10.5012/bkcs.2003.24.12.1805

    Article  CAS  Google Scholar 

  10. Hung DQ, Nekrassova O, Compton RG (2004) Analytical methods for inorganic arsenic in water: a review. Talanta 64:269–277. doi:10.1016/j.talanta.2004.01.027

    Article  CAS  Google Scholar 

  11. Caballo-López A, Luque de Castro MD (2003) Slurry sampling-microwave assisted leaching prior to hydride generation-pervaporation-atomic fluorescence detection for the determination of extractable arsenic in soil. Anal Chem 75:2011–2017. doi:10.1021/ac026156u

    Article  Google Scholar 

  12. Feeney R, Kounaves SP (2000) On-site analysis of arsenic in groundwater using a microfabricated gold ultramicroelectrode Array. Anal Chem 72:2222–2228. doi:10.1021/ac991185z

    Article  CAS  Google Scholar 

  13. Yamada D, Ivandini TA, Komatsu M, Fujishima A, Einaga Y (2008) Anodic stripping voltammetry of inorganic species of As3+ and As5+ at gold-modified boron doped diamond electrodes. J Electroanal Chem 615:145–153. doi:10.1016/j.jelechem.2007.12.004

    Article  CAS  Google Scholar 

  14. Song Y, Swain GM (2007) Total inorganic arsenic detection in real water samples using anodic stripping voltammetry and a gold-coated diamond thin-film electrode. Anal Chim Acta 593:7–12. doi:10.1016/j.aca.2007.04.033

    Article  CAS  Google Scholar 

  15. Wei Z, Somasundaran P (2004) Cyclic voltammetric study of arsenic reduction and oxidation in hydrochloric acid using a Pt RDE. J Appl Electrochem 34:241–244. doi:10.1023/B:JACH.0000010005.59717.44

    Article  CAS  Google Scholar 

  16. Gibbon-Walsh K, Salaün P, Uroic MK, Feldmann J, McArthur JM, van den Berg CMG (2011) Voltammetric determination of arsenic in high iron and manganese groundwaters. Talanta 85:1404–1411. doi:10.1016/j.talanta.2011.06.038

    Article  CAS  Google Scholar 

  17. Mays DE, Hussam A (2009) Voltammetric methods for determination and speciation of inorganic arsenic in the environment—a review. Anal Chim Acta 646:6–16. doi:10.1016/j.aca.2009.05.006

    Article  CAS  Google Scholar 

  18. Thomas F, Henze G (2001) Introduction to voltammetric analysis: theory and practice. In: Stripping analysis. CSIRO, Canberra, pp 58–89

  19. Buffle J, Tercier-Waeber ML (2005) Voltammetric environmental trace-metal analysis and speciation: from laboratory to in situ measurements. TrAC Trends Anal Chem 24:172–191. doi:10.1016/j.trac.2004.11.013

    Article  CAS  Google Scholar 

  20. Zima J, van den Berg CMG (1994) Determination of arsenic in sea water by cathodic stripping voltammetry in the presence of pyrrolidine dithiocarbamate. Anal Chim Acta 289:291–298. doi:10.1016/0003-2670(94)90004-T

    Article  CAS  Google Scholar 

  21. Li H, Smart RB (1996) Determination of sub-nanomolar concentration of arsenic(III) in natural waters by square wave cathodic stripping voltammetry. Anal Chim Acta 325:25–32. doi:10.1016/0003-2670(96)00011-6

    Article  CAS  Google Scholar 

  22. He Y, Zheng Y, Ramnaraine M, Locke DC (2004) Differential pulse cathodic stripping voltammetric speciation of trace level inorganic arsenic compounds in natural water samples. Anal Chim Acta 511:55–61. doi:10.1016/j.aca.2004.01.036

    Article  CAS  Google Scholar 

  23. Adeloju SB, Young TM, Jagner D, Batley GE (1999) Constant current cathodic stripping potentiometric determination of arsenic on a mercury film electrode in the presence of copper ions. Anal Chim Acta 381:207–213. doi:10.1016/S0003-2670(98)00700-4

    Article  CAS  Google Scholar 

  24. Hignett G, Wadhawan JD, Lawrence NS, Hung DQ, Prado C, Marken F, Compton RG (2004) Electrochemical detection of As(III) via iodine electrogenerated at platinum, gold, diamond or carbon-based electrodes. Electroanalysis 16:897–903. doi:10.1002/elan.200302903

    Article  CAS  Google Scholar 

  25. Simm AO, Banks CE, Compton RG (2005) The electrochemical detection of arsenic(III) at a silver electrode. Electroanalysis 17:1727–1733. doi:10.1002/elan.200503299

    Article  CAS  Google Scholar 

  26. Piech R, Baś B, Niewiara E, Kubiak WW (2007) Determination of trace arsenic on hanging copper amalgam drop electrode. Talanta 72:762–767. doi:10.1016/j.talanta.2006.12.008

    Article  CAS  Google Scholar 

  27. Dai X, Nekrassova O, Hyde ME, Compton RG (2004) Anodic stripping voltammetry of arsenic(III) using gold nanoparticle-modified electrodes. Anal Chem 76:5924–5929. doi:10.1021/ac049232x

    Article  CAS  Google Scholar 

  28. Salaün P, Planer-Friedrich B, van den Berg CMG (2007) Inorganic arsenic speciation in water and seawater by anodic stripping voltammetry with a gold microelectrode. Anal Chim Acta 585:312–322. doi:10.1016/j.aca.2006.12.048

    Article  Google Scholar 

  29. Gibbon-Walsh K, Salaün P, van den Berg CMG (2012) Determination of arsenate in natural pH seawater using a manganese-coated gold microwire electrode. Anal Chim Acta 710:50–57. doi:10.1016/j.aca.2011.10.041

    Article  CAS  Google Scholar 

  30. Gao C, Yu XY, Xiong SQ, Liu JH, Huang XJ (2013) Electrochemical detection of arsenic(III) completely free from noble metal: Fe3O4 microspheres-room temperature ionic liquid composite showing better performance than gold. Anal Chem 85:2673–2680. doi:10.1021/ac303143x

    Article  CAS  Google Scholar 

  31. Cavicchioli A, La-Scalea MA, Gutz IGR (2004) Analysis and speciation of traces of arsenic in environmental, food and industrial samples by voltammetry: a review. Electroanalysis 16:697–711. doi:10.1002/elan.200302936

    Article  CAS  Google Scholar 

  32. Jagner D, Josefson M, Westerlund S (1981) Determination of arsenic(III) by computerized potentiometric stripping analysis. Anal Chem 53:2144–2146. doi:10.1021/ac00236a049

    Article  CAS  Google Scholar 

  33. Brusciotti F, Duby P (2007) Cyclic voltammetry study of arsenic in acidic solutions. Electrochim Acta 52:6644–6649. doi:10.1016/j.electacta.2007.04.071

    Article  CAS  Google Scholar 

  34. Kowalska J, Golimowski J (1998) Voltammetric determination of arsenic in zinc oxide used as a feed additive. Electroanalysis 10:857–859. doi:10.1002/(SICI)1521-4109(199809)10:12<857:AID-ELAN857>3.0.CO;2-4

    Article  CAS  Google Scholar 

  35. Hua C, Jagner D, Renman L (1987) Automated determination of total arsenic in sea water by flow constant-current stripping analysis with gold fibre electrodes. Anal Chim Acta 201:263–268. doi:10.1016/S0003-2670(00)85343-X

    Article  CAS  Google Scholar 

  36. Eguiarte I, Alonso RM, Jiménez RM (1996) Determination of total arsenic in soils by differential-pulse cathodic stripping voltammetry. Analyst 121:1835–1838. doi:10.1039/AN9962101835

    Article  CAS  Google Scholar 

  37. Holak W (1980) Determination of arsenic by cathodic stripping voltammetry with a hanging mercury drop electrode. Anal Chem 52:2189–2192. doi:10.1021/ac50063a044

    Article  CAS  Google Scholar 

  38. Sadana RS (1983) Determination of arsenic in the presence of copper by differential pulse cathodic stripping voltammetry at a hanging mercury drop electrode. Anal Chem 55:304–307. doi:10.1021/ac00253a028

    Article  CAS  Google Scholar 

  39. Adeloju SB, Young TM (1997) Assessment of constant current anodic stripping potentiometry for determination of arsenic in fish and water samples. Anal Lett 30:147–161. doi:10.1080/00032719708002297

    Article  CAS  Google Scholar 

  40. Forsberg G, O’Laughlin JW, Megargle RG, Koirtyihann SR (1975) Determination of arsenic by anodic stripping voltammetry and differential pulse anodic stripping voltammetry. Anal Chem 47:1586–1592. doi:10.1021/ac60359a057

    Article  CAS  Google Scholar 

  41. He Y, Zheng Y, Locke DC (2007) Cathodic stripping voltammetric analysis of arsenic species in environmental water samples. Microchem J 85:265–269. doi:10.1016/j.microc.2006.06.012

    Article  CAS  Google Scholar 

  42. Luong JHT, Lam E, Male KB (2014) Recent advances in electrochemical detection of arsenic in drinking and ground waters. Anal Methods 6:6157–6169. doi:10.1039/C4AY00817K

    Article  CAS  Google Scholar 

  43. Simm AO, Banks CE, Wilkins SJ, Karousos NG, Davis J, Compton RG (2005) A comparison of different types of gold–carbon composite electrode for detection of arsenic(III). Anal Bioanal Chem 381:979–985. doi:10.1007/s00216-004-2960-z

    Article  CAS  Google Scholar 

  44. Chadim P, Švancara I, Pihlar B, Vytřas K (2000) Gold-plated carbon paste electrodes for anodic stripping determination of arsenic. Collect Czechoslov Chem Commun. doi:10.1135/cccc20001035

    Google Scholar 

  45. Švancara I, Vytřas K, Bobrowski A, Kalcher K (2002) Determination of arsenic at a gold-plated carbon paste electrode using constant current stripping analysis. Talanta 58:45–55. doi:10.1016/S0039-9140(02)00255-2

    Article  Google Scholar 

  46. Cepriá G, Hamida S, Laborda F, Castillo JR (2009) Electroanalytical determination of arsenic(III) and total arsenic in 1 mol L−1 HCl using a carbonaceous electrode without a reducing agent. Anal Lett 42:1971–1985. doi:10.1080/00032710903082713

    Article  Google Scholar 

  47. Bandosz TJ, Jagiello J, Contescu C, Schwarz JA (1993) Characterization of the surfaces of activated carbons in terms of their acidity constant distributions. Carbon 31:1193–1202. doi:10.1016/0008-6223(93)90072-I

    Article  CAS  Google Scholar 

  48. Jagiello J (1994) Stable numerical solution of the adsorption integral equation using splines. Langmuir 10:2778–2785. doi:10.1021/la00020a045

    Article  CAS  Google Scholar 

  49. Boehm HP (1994) Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 32:759–769. doi:10.1016/0008-6223(94)90031-0

    Article  CAS  Google Scholar 

  50. Aguirre MC, Rivas BL, Basáez L, Peña-Farfal C (2011) Electrochemical detection of arsenite with silver electrodes in inorganic electrolyte and natural system mixtures. J Braz Chem Soc 22:2362–2370. doi:10.1590/S0103-50532011001200018

    Article  CAS  Google Scholar 

  51. Švancara I, Vytřas K, Kalcher K, Walcarius A, Wang J (2009) Carbon paste electrodes in facts, numbers, and notes: a review on the occasion of the 50-years jubilee of carbon paste in electrochemistry and electroanalysis. Electroanalysis 21:7–28. doi:10.1002/elan.200804340

    Article  Google Scholar 

  52. Jeong H, Jin M, So K, Lim SC, Lee YH (2009) Tailoring the characteristics of graphite oxides by different oxidation times. J Phys Appl Phys 42:065418. doi:10.1088/0022-3727/42/6/065418

    Article  Google Scholar 

  53. Arcibar-Orozco JA, Avalos-Borja M, Rangel-Mendez JR (2012) Effect of phosphate on the particle size of ferric oxyhydroxides anchored onto activated carbon: As(V) removal from water. Environ Sci Technol 46:9577–9583. doi:10.1021/es204696u

    Article  CAS  Google Scholar 

  54. Grygar T (1995) Kinetics of electrochemical reductive dissolution of iron(III) hydroxy-oxides. Collect Czechoslov Chem Commun 60:1261–1273. doi:10.1135/cccc19951261

    Article  CAS  Google Scholar 

  55. Jolivet JP, Chanéac C, Tronc E (2004) Iron oxide chemistry. From molecular clusters to extended solid networks. Chem Commun 5:481–483. doi:10.1039/B304532N

    Article  Google Scholar 

  56. Leon y Leon CA, Radovic LR (1994) Interfacial chemistry and electrochemistry of carbon surfaces. In: Thrower PA (ed) Chemistry and Physics of Carbon. Marcel Dekker, New York, pp 227–40557

    Google Scholar 

  57. Montes-Morán MA, Suárez D, Menéndez JA, Fuente E (2004) On the nature of basic sites on carbon surfaces: an overview. Carbon 42:1219–1225. doi:10.1016/j.carbon.2004.01.023

    Article  Google Scholar 

  58. Jia Y, Demopoulos GP (2005) Adsorption of arsenate onto ferrihydrite from aqueous solution: influence of media (sulfate vs. nitrate), added gypsum, and pH alteration. Environ Sci Technol 39:9523–9527. doi:10.1021/es051432i

    Article  CAS  Google Scholar 

  59. Negrea A, Muntean C, Lupa L, Lazau R, Ciopec M, Negrea P (2010) Arsenite adsorption on some materials containing iron. Effect of anionic species. Chem Bull Politeh Univ Timisoara 55:46–49

    Google Scholar 

  60. Pierce ML, Moore CB (1982) Adsorption of arsenite and arsenate on amorphous iron hydroxide. Water Res 16:1247–1253. doi:10.1016/0043-1354(82)90143-9

    Article  CAS  Google Scholar 

  61. Raven KP, Jain A, Loeppert RH (1998) Arsenite and arsenate adsorption on ferrihydrite: kinetics, equilibrium, and adsorption envelopes. Environ Sci Technol 32:344–349. doi:10.1021/es970421p

    Article  CAS  Google Scholar 

  62. Jain A, Raven KP, Loeppert RH (1999) Arsenite and arsenate adsorption on ferrihydrite: surface charge reduction and net OH- release stoichiometry. Environ Sci Technol 33:1179–1184. doi:10.1021/es980722e

    Article  CAS  Google Scholar 

  63. Goldberg S, Johnston CT (2001) Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling. J Colloid Interface Sci 234:204–216. doi:10.1006/jcis.2000.7295

    Article  CAS  Google Scholar 

  64. David M, Sherman SRR (2003) Surface complexation of arsenic(V) to iron(III) (hydr)oxides: structural mechanism from ab initio molecular geometries and EXAFS spectroscopy. Geochim Cosmochim Acta 67:4223–4230. doi:10.1016/S0016-7037(03)00237-0

    Article  Google Scholar 

  65. Guo X, Du Y, Chen F, Park HS, Xie Y (2007) Mechanism of removal of arsenic by bead cellulose loaded with iron oxyhydroxide (β-FeOOH): EXAFS study. J Colloid Interface Sci 314:427–433. doi:10.1016/j.jcis.2007.05.071

    Article  CAS  Google Scholar 

  66. Wang Y, Morin G, Ona-Nguema G, Menguy N, Juillot F, Aubry E (2008) Arsenite sorption at the magnetite–water interface during aqueous precipitation of magnetite: EXAFS evidence for a new arsenite surface complex. Geochim Cosmochim Acta 72:2573–2586. doi:10.1016/j.gca.2008.03.011

    Article  CAS  Google Scholar 

  67. Mc Creery R, Cline K (1996) Carbon electrodes. In: Kissinger PT, Heineman WR (eds) Laboratory techniques in electroanalytical chemistry, 2nd edn. Marcel Dekker, New York, pp 293–332

    Google Scholar 

  68. Nieto-Delgado C, Rangel-Mendez JR (2012) Anchorage of iron hydro(oxide) nanoparticles onto activated carbon to remove As(V) from water. Water Res 46:2973–2982. doi:10.1016/j.watres.2012.03.026

    Article  CAS  Google Scholar 

  69. Vitela-Rodriguez AV, Rangel-Mendez JR (2013) Arsenic removal by modified activated carbons with iron hydro(oxide) nanoparticles. J Environ Manag 114:225–231. doi:10.1016/j.jenvman.2012.10.004

    Article  CAS  Google Scholar 

  70. Davis PH, Dulude GR, Griffin RM, Matson WR, Zink EW (1978) Determination of total arsenic at the nanogram level by high-speed anodic stripping voltammetry. Anal Chem 50:137–143. doi:10.1021/ac50023a031

    Article  Google Scholar 

  71. Cepriá G, Hamida S, Laborda F, Castillo JR (2007) Direct reduction of As(V) physically attached to a graphite electrode mediated by Fe(III). J Appl Electrochem 37:1171–1176. doi:10.1007/s10800-007-9380-7

    Article  Google Scholar 

  72. Melitas N, Conklin M, Farrell J (2002) Electrochemical study of arsenate and water reduction on iron media used for arsenic removal from potable water. Environ Sci Technol 36:3188–3193. doi:10.1021/es0157595

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from CONACyT through projects SEP-CONACyT 169634 and 105920, and the scholarship received (323473). In addition, the authors appreciate the support from LINAN and LANBAMA national laboratories, and the technical support of M.C. Rocha-Medina, D.I. Partida-Gutiérrez, B.A. Rivera-Escoto, G. Vidriales-Escobar, and G. Vidal-García.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis F. Chazaro-Ruiz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 63 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toral-Sanchez, E., Rangel-Mendez, J.R. & Chazaro-Ruiz, L.F. Characterization of iron-modified carbon paste electrodes and their application in As(V) detection. J Appl Electrochem 46, 205–215 (2016). https://doi.org/10.1007/s10800-015-0903-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-015-0903-3

Keywords

Navigation