Journal of Applied Electrochemistry

, Volume 45, Issue 12, pp 1239–1254 | Cite as

Acid mine drainage: electrochemical approaches to prevention and remediation of acidity and toxic metals

Research Article
Part of the following topical collections:
  1. Electrochemical Processes


Acid mine drainage (AMD), caused by biological oxidation of sulfide minerals in the presence of air and water, is a significant environmental problem because of its acidity and the presence of high concentrations of iron and solubilized toxic metal ions. The focus of this review is to consider the prospects for electrochemical technologies for either prevention or remediation of AMD, with physico-chemical technologies mentioned for comparison.


Acid mine drainage Electrochemical technologies Soluble toxic metals Prospects for implementation Electrochemical neutralization 



We thank the Natural Sciences and Engineering Research Council of Canada for financial support and Dr. Gene Shelp of ENPAR Technologies Inc. for helpful comments on Sect. 2.2.


  1. 1.
    Jacobs JA, Vance DB (2014) Biogeochemistry of acid drainage. In: Jacobs JA, Lehr JH, Testa SM (eds) Acid mine drainage, rock drainage, and acid sulfate soils. Wiley, Hoboken, pp 15–51CrossRefGoogle Scholar
  2. 2.
    Vance DB (2014) The sulfur cycle: acid drainage and beyond. In: Jacobs JA, Lehr JH, Testa SM (eds) Acid mine drainage, rock drainage, and acid sulfate soils. Wiley, Hoboken, pp 81–95CrossRefGoogle Scholar
  3. 3.
    Simate GS, Ndlovu S (2014) Acid mine drainage: challenges and opportunities. J Environ Chem Eng 2:1785–1803CrossRefGoogle Scholar
  4. 4.
    Dold B (2014) Evolution of acid mine drainage formation in sulfidic mine tailings. Minerals 4:621–641CrossRefGoogle Scholar
  5. 5.
    Yacob T, Pandey S, Silverstein JA, Rajaram H (2013) Soluble microbial products decrease pyrite oxidation by ferric iron at pH < 2. Environ Sci Technol 47:8658–8665Google Scholar
  6. 6.
    Nordstrom DK (2011) Mine waters: acidic to circumneutral. Elements 7:393–398CrossRefGoogle Scholar
  7. 7.
    Chandra AP, Gerson AR (2010) The mechanisms of pyrite oxidation and leaching: a fundamental perspective. Surf Sci Rep 65:293–315CrossRefGoogle Scholar
  8. 8.
    Rimstidt JD, Vaughan DJ (2003) Pyrite oxidation: a state-of-the-art assessment of the reaction mechanism. Geochim Cosmochim Acta 67:873–880CrossRefGoogle Scholar
  9. 9.
    Amos RT, Blowes DW, Bailey BL, Sego DC, Smith L, Ritchie AIM (2014) Waste-rock hydrogeology and geochemistry. Appl Geochem (ahead of print)Google Scholar
  10. 10.
    Nordstrom DK (2011) Hydrogeochemical processes governing the origin, transport and fate of major and trace elements from mine wastes and mineralized rock to surface waters. Appl Geochem 26:1777–1791CrossRefGoogle Scholar
  11. 11.
    US EPA (1994) Technical Report: Acid mine drainage prediction. EPA 530-R-94-036Google Scholar
  12. 12.
    Blicker PS, Neuman DR, Jennings SR, Jacobs JA (2014) In: Jacobs JA, Lehr JH, Testa SM (eds) Acid mine drainage, rock drainage, and acid sulfate soils. Wiley, Hoboken, pp 377–385CrossRefGoogle Scholar
  13. 13.
    Rohwerder T, Gehrke T, Kinzler K, Sand W (2003) Bioleaching review part A. Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl Microbiol Biotechnol 63(3):239–248CrossRefGoogle Scholar
  14. 14.
    Downing BW (2014) The microbiology of acid drainage. In: Jacobs JA, Lehr JH, Testa SM (eds) Acid mine drainage, rock drainage, and acid sulfate soils. Wiley, Hoboken, pp 61–65CrossRefGoogle Scholar
  15. 15.
    Chen Y-T, Li J-T, Chen L-X, Hua Z-S, Huang L-N, Liu J, Xu B-B, Liao B, Shu W-S (2014) Biogeochemical processes governing natural pyrite oxidation and release of acid metalliferous drainage. Environ Sci Technol 48:5537–5545CrossRefGoogle Scholar
  16. 16.
    Bonnefoy V, Holmes DS (2012) Genomic insights into microbial iron oxidation and iron uptake strategies in extremely acidic environments. Environ Microbiol 14:1597–1611CrossRefGoogle Scholar
  17. 17.
    Schippers A, Breuker A, Blazejak A, Bosecker K, Kock D, Wright TL (2010) The biogeochemistry and microbiology of sulfidic mine waste and bioleaching dumps and heaps, and novel Fe(II)-oxidizing bacteria. Hydromettalurgy 104:342–350CrossRefGoogle Scholar
  18. 18.
    Hallberg KB (2010) New perspectives in acid mine drainage microbiology. Hydrometallurgy 104:448–453CrossRefGoogle Scholar
  19. 19.
    Holmes PR, Fowler TA, Crundwell FK (1999) The mechanism of bacterial action in the leaching of pyrite by Thiobacillus ferrooxidans. An electrochemical study. J Electrochem Soc 146:2906–2912CrossRefGoogle Scholar
  20. 20.
    Downing BW, Jacobs JA (2014) Acid rock drainage as related to permafrost, glaciers, and climate change. In: Jacobs JA, Lehr JH, Testa SM (eds) Acid mine drainage, rock drainage, and acid sulfate soils. Wiley, Hoboken, pp 185–189CrossRefGoogle Scholar
  21. 21.
    Ilyashuk BP, Ilyashuk EA, Psenner R, Tessadri R, Koinig KA (2014) Rock glacier outflows may adversely affect lakes: lessons from the past and present of two neighboring water bodies in a crystalline-rock watershed. Environ Sci Technol 48:6192–6200CrossRefGoogle Scholar
  22. 22.
    Lacelle D, Leveille R (2010) Acid drainage generation and associated Ca-Fe-SO4 minerals in a periglacial environment, Eagle Plains, Northern Yukon, Canada: a potential analogue for low-temperature sulfate formation on Mars. Planet Space Sci 58:509–521CrossRefGoogle Scholar
  23. 23.
    Lacelle D, Doucet A, Clark ID, Lauriol B (2007) Acid drainage generation and seasonal recycling in disturbed permafrost near Eagle Plains, northern Yukon Territory, Canada. Chem Geol 243:157–177CrossRefGoogle Scholar
  24. 24.
    Neuman DR, Jennings SR, Jacobs JA (2014) Acid drainage and aquatic resources. In: Jacobs JA, Lehr JH, Testa SM (eds) Acid mine drainage, rock drainage, and acid sulfate soils. Wiley, Hoboken, pp 131–137CrossRefGoogle Scholar
  25. 25.
    Neuman DR, Brown PJ, Jennings SR (2014) Metals associated with acid rock drainage and their effect on fish health and ecosystems. In: Jacobs JA, Lehr JH, Testa SM (eds) Acid mine drainage, rock drainage, and acid sulfate soils. Wiley, Hoboken, pp 139–169CrossRefGoogle Scholar
  26. 26.
    Byrne P, Wood PJ, Reid I (2012) The impairment of river systems by metal mine contamination: a review including remediation options. Crit Rev Environs Sci Technol 42:2017–2077CrossRefGoogle Scholar
  27. 27.
    Jacobs JA, Testa SM (2014) The Iron Mountain mine in Shasta county, California. In: Jacobs JA, Lehr JH, Testa SM (eds) Acid mine drainage, rock drainage, and acid sulfate soils. Wiley, Hoboken, pp 355–360CrossRefGoogle Scholar
  28. 28.
    Campbell KM, Alpers CN, Nordstrom DK, Blum AE, Williams A (2013) Characterization and remediation of iron(III) oxide-rich scale in a pipeline carrying acid mine drainage at Iron Mountain Mine, California, USA. In: Brown A, Wolkersdorfer C, Figueroa L (eds) International Mine Water Association Annual Conference, Golden, CO, United States, pp 287–293Google Scholar
  29. 29.
    Druschel GK, Baker BJ, Gihring TM, Banfield JF (2004) Acid mine drainage biogeochemistry at Iron Mountain, California. Geochem Trans 5:13–32CrossRefGoogle Scholar
  30. 30.
    Alpers CN, Nordstrom DK, Spitzley J (2003) Extreme acid mine drainage from a pyritic massive sulfide deposit: the Iron Mountain end-member. Short Course Series—Mineralogical Association of Canada, pp 407–430Google Scholar
  31. 31.
    Nordstrom DK, Alpers CN, Ptacek CJ, Blowes DW (2000) Negative pH and extremely acidic mine waters from Iron Mountain, California. Environ Sci Technol 34:254–258CrossRefGoogle Scholar
  32. 32.
    Nordstrom DK, Alpers CN (1999) Negative pH, efflorescent mineralogy, and consequences for environmental restoration at the Iron Mountain Superfund site, California. Proc Natl Acad Sci USA 96:3455–3462CrossRefGoogle Scholar
  33. 33.
    Van Muylder J, Pourbaix M (1974) In: Pourbaix M (ed) Atlas of Electrochemical Equilibria in Aqueous Solution. National Association of Corrosion Engineers, HoustonGoogle Scholar
  34. 34.
    Jennings SR, Jacobs JA (2014) Overview of acid drainage prediction and prevention. In: Jacobs JA, Lehr JH, Testa SM (eds) Acid mine drainage, rock drainage, and acid sulfate soils. Wiley, Hoboken, pp 207–215Google Scholar
  35. 35.
    Zipper C, Skousen J (2014) Passive treatment of acid mine drainage. In: Jacobs JA, Lehr JH, Testa SM (eds) Acid mine drainage, rock drainage, and acid sulfate soils. Wiley, Hoboken, pp 339–353CrossRefGoogle Scholar
  36. 36.
    Skousen J (2014) Overview of acid mine drainage treatment with chemicals. In: Jacobs JA, Lehr JH, Testa SM (eds) Acid mine drainage, rock drainage, and acid sulfate soils. Wiley, Hoboken, pp 327–337Google Scholar
  37. 37.
    Garcia V, Haeyrynen P, Landaburu-Aguirre J, Pirilae M, Keiski RL, Urtiaga A (2014) Purification techniques for the recovery of valuable compounds from acid mine drainage and cyanide tailings: application of green engineering principles. J Chem Technol Biotechnol 89:803–813CrossRefGoogle Scholar
  38. 38.
    Sahoo PK, Kim K, Equeenuddin SM, Powell MA (2013) Current approaches for mitigating acid mine drainage. In: Whitacre DM (ed) Reviews of environmental contamination and toxicology, vol 226. Springer, New York, pp 1–32Google Scholar
  39. 39.
    Tariq A, Yanful EK (2013) A review of binders used in cemented paste tailings for underground and surface disposal practices. J Environ Manag 131:138–149CrossRefGoogle Scholar
  40. 40.
    Kleinmann RLP (1998) Bactericidal control of acidic drainage. In: Brady KBC, Smith MW, Schueck J (eds) Coal mine drainage prediction and pollution prevention in Pennsylvania, The Pennsylvania Dept of Environmental Protection, Harrisburg, PA, chapter 15 pp 1–6Google Scholar
  41. 41.
    Sand W, Jozsa P-G, Kovacs Z-M, Sasaran N, Schippers A (2007) Long-term evaluation of acid rock drainage mitigation measures in large lysimeters. J Geochem Explor 92:205–211CrossRefGoogle Scholar
  42. 42.
    Schippers A, Jozsa P-G, Kovacs Z-M, Jelea M, Sand W (2001) Large-scale experiments for microbiological evaluation of measures for safeguarding sulfidic mine waste. Waste Manag 21:139–146CrossRefGoogle Scholar
  43. 43.
    Kleinmann RLP, Erickson PM (1983) Control of acid drainage from coal refuse using anionic surfactants. Rep Invest 8847 U.S. Bur MinesGoogle Scholar
  44. 44.
    Konnecker G, Regelmann J, Belanger S, Gamon K, Sedlak R (2011) Environmental properties and aquatic hazard assessment of anionic surfactants: physico-chemical, environmental fate and ecotoxicity properties. Ecotoxicol Environ Saf 74:1445–1460CrossRefGoogle Scholar
  45. 45.
    Mungray AK, Kumar P (2008) Occurrence of anionic surfactants in treated sewage: risk assessment to aquatic environment. J Hazard Mater 160:362–370CrossRefGoogle Scholar
  46. 46.
    Florian BM, Sand W (2012) Inhibition of bacterial pyrite leaching by surfactants. Microb Appl Res Conf 140–146Google Scholar
  47. 47.
    Viggi CC, Pagnanelli F, Sabattini M, Toro L (2009) Inhibition of iron oxidizing bacteria involved in the generation of acid mine drainage. Adv Mater Res 71–73:681–684CrossRefGoogle Scholar
  48. 48.
    Pagnanelli F, Luigi M, Mainelli S, Toro L (2007) Use of natural materials for the inhibition of iron oxidizing bacteria involved in the generation of acid mine drainage. Hydrometallurgy 87:27–35CrossRefGoogle Scholar
  49. 49.
    Skousen JG, Sexstone A, Ziemkiewicz PF (2000) Acid mine drainage control and treatment. Agronomy 41:131–168Google Scholar
  50. 50.
    Skousen J (1997) Overview of passive systems for treating acid mine drainage. Green Lands Fall: 34–43Google Scholar
  51. 51.
    Wang HL, Shang JQ, Kovac V, Ho KS (2006) Utilization of Atikokan coal fly ash in acid rock drainage control from Musselwhite Mine tailings. Can Geotech J 43:229–243CrossRefGoogle Scholar
  52. 52.
    Vigneault B, Campbell PGC, Tessier A, de Vitre R (2001) Geochemical changes in sulfidic mine tailings stored under a shallow water cover. Wat Res 35:1066–1076CrossRefGoogle Scholar
  53. 53.
    Kuyucak N (2002) Acid mine drainage prevention and control options. CIM Bull 95:95–102Google Scholar
  54. 54.
    Dold B (2014) Submarine tailings disposal (STD)—a review. Minerals 4:642–666CrossRefGoogle Scholar
  55. 55.
    Prisetiahade K, Yanagi T (2008) Seasonal variation in the behavior of tailing wastes in Buyat Bay, Indonesia. Mar Pollut Bull 57:170–181CrossRefGoogle Scholar
  56. 56.
    Lasut MT, Yasuda Y, Edinger EN, Pangemanan JM (2010) Distribution and accumulation of mercury derived from gold mining in marine environment and its impact on residents of Buyat Bay, North Sulawesi, Indonesia. Water Air Soil Pollut 208:153–164CrossRefGoogle Scholar
  57. 57.
    Edinger EN, Azmy K, Diegor W, Siregar PR (2008) Heavy metal contamination from gold mining recorded in Porites lobate skeletons, Buyat-Ratototok district, North Sulawesi, Indonesia. Mar Pollut Bull 56:1553–1569CrossRefGoogle Scholar
  58. 58.
    Ledin M, Pedersen K (1996) The environmental impact of mine wastes—roles of microorganisms and their significance in treatment of mine wastes. Earth Sci Rev 41:67–108CrossRefGoogle Scholar
  59. 59.
    Norton P (1993) Engineered wetland and AMD. Min Environ Manag (1993) Sep 2–13Google Scholar
  60. 60.
    McGregor RG, Blowes DW, Jambor JL, Robertson WD (1998) Mobilization and attenuation of heavy metals within a nickel mine tailings impoundment near Sudbury, Ontario, Canada. Environ Geol 36:305–319CrossRefGoogle Scholar
  61. 61.
    Agnew M, Taylor G (2000) Laterally extensive surface hardpans in tailings storage facilities as possible inhibitors of acid rock drainage. ICARD 2000. In: Proceedings from the international conference on acid rock drainage, 5th, Denver, CO, United States, May 21–24, 1337–1346Google Scholar
  62. 62.
    Stongin DR, Schoonen M, Hao J (2010) Method for inhibiting decomposition of metal sulfide-containing material. Patent WO 2010/104736 A1Google Scholar
  63. 63.
    Hao J, Murphy R, Lim E, Schoonen MAA, Strongin DR (2009) Effects of phospholipid on pyrite oxidation in the presence of autotrophic and heterotrophic bacteria. Geochim Cosmochim Acta 73:4111–4123CrossRefGoogle Scholar
  64. 64.
    Hao J, Cleveland C, Lim E, Strongin DR, Schoonen MAA (2006) The effect of adsorbed lipid on pyrite oxidation under biotic conditions. Geochem Trans 7:8CrossRefGoogle Scholar
  65. 65.
    Zhang XV, Kendall TA, Hao J, Strongin DR, Schoonen MAA, Martin ST (2006) Physical structures of lipid layers on pyrite. Environ Sci Technol 40:1511–1515CrossRefGoogle Scholar
  66. 66.
    Kargbo DM, Atallah G, Chatterjee S (2004) Inhibition of pyrite oxidation by a phospholipid in the presence of silicate. Environ Sci Technol 38:3432–3441CrossRefGoogle Scholar
  67. 67.
    Elsetinow AR, Borda MJ, Schoonen MAA, Strongin DR (2003) Suppression of pyrite oxidation in acidic aqueous environments using lipids having two hydrophobic tails. Adv Environ Res 7:969–974CrossRefGoogle Scholar
  68. 68.
    Agorhom EA, Skinner W, Zanin M (2014) Diethylenetriamine depression of Cu-activated pyrite hydrophobised by xanthate. Miner Eng 57:36–42CrossRefGoogle Scholar
  69. 69.
    Shu X, Dang Z, Zhang Q, Yi X, Lu G, Guo C, Yang C (2013) Passivation of metal-sulfide tailings by covalent coating. Miner Eng 42:36–42CrossRefGoogle Scholar
  70. 70.
    Chen Y-W, Li Y, Cai M-F, Belzile N, Dang Z (2006) Preventing oxidation of iron sulfide minerals by polyethylene polyamines. Miner Eng 19:19–27CrossRefGoogle Scholar
  71. 71.
    Chusuei CC, Zaman KM, Atwood DA (2008) Charge transfer between benzene-1,3-diamidoethanethiol (BDET) and metal sulfide affect efficiency of acid mine drainage treatment. Colloid Surf A 331:155–161CrossRefGoogle Scholar
  72. 72.
    Matlock MM, Howerton BS, Atwood DA (2003) Covalent coating of coal refuse to inhibit leaching. Adv Environ Res 7:495–501CrossRefGoogle Scholar
  73. 73.
    Smith KW, Snider JL, Poindexter J (2013) Constraining pyrite activity in shale. EP 2554623 A1Google Scholar
  74. 74.
    Nowak P, Socha RP, Cieslik T (2012) Influence of adsorption on the charge transfer reactions at the pyrite surface. Preliminary study. Physicochem Probl Miner Process 48:19–28Google Scholar
  75. 75.
    Jiang CL, Wang XH, Parekh BK (2000) Effect of sodium oleate on inhibiting pyrite oxidation. Int J Miner Process 58:305–318CrossRefGoogle Scholar
  76. 76.
    Diao Z, Shi T, Wang S, Huang X, Zhang T, Tang Y, Zhang X, Qiu R (2013) Silane-based coatings on the pyrite for remediation of acid mine drainage. Water Res 47:4391–4402CrossRefGoogle Scholar
  77. 77.
    You G-x Yu, C-c LuY, Dang Z (2013) Evaluation of the protective effect of polysiloxane coating on pyrite with electrochemical techniques. Electrochim Acta 93:65–71CrossRefGoogle Scholar
  78. 78.
    Acai P, Sorrenti E, Gorner T, Polakovic M, Kongolo M, de Donato P (2009) Pyrite passivation by humic acid investigated by inverse liquid chromatography. Colloid Surf A 337:39–46CrossRefGoogle Scholar
  79. 79.
    Duval JFL, Sorrenti E, Waldvogel Y, Gorner T, de Donato P (2007) On the use of electrokinetic phenomena of the second kind for probing electrode kinetic properties of modified electron-conducting surfaces. Phys Chem Chem Phys 9:1713–1729CrossRefGoogle Scholar
  80. 80.
    Belzile N, Maki S, Chen Y-W, Goldsack D (1997) Inhibition of pyrite oxidation by surface treatment. Sci Total Environ 196:177–186CrossRefGoogle Scholar
  81. 81.
    Sasaki K, Tsunekawa M, Tanaka S, Konno H (1996) Suppression of microbially mediated dissolution of pyrite by originally isolated fulvic acids and related compounds. Colloid Surf A 119:241–253CrossRefGoogle Scholar
  82. 82.
    Kollias K, Mylona E, Papassiopi N, Xenidis A (2014) Conditions favoring the formation of iron phosphate coatings on the pyrite surface. Desalin Water Treat (ahead of print)Google Scholar
  83. 83.
    Ji M-K, Gee E-D, Yun H-S, Lee W-R, Park Y-T, Khan MA, Jeon B-H, Choi J (2012) Inhibition of sulfide mineral oxidation b surface coating agents: batch and field studies. J Hazard Mater 229–230:298–306CrossRefGoogle Scholar
  84. 84.
    Mauric A, Lottermoser BG (2011) Phosphate amendment of metallifrous waste rocks, Century Pb–Zn mine, Australia: Laboratory and field trials. Appl Geochem 26:45–56CrossRefGoogle Scholar
  85. 85.
    Harris DL, Lottermoser BG (2006) Evaluation of phosphate fertilizers for ameliorating acid mine waste. Appl Geochem 21:1216–1225CrossRefGoogle Scholar
  86. 86.
    Evangelou VP (2001) Pyrite microencapsulation technologies: principles and potential field application. Ecol Eng 17:165–178CrossRefGoogle Scholar
  87. 87.
    Fytas K, Evangelou B (1998) Phosphate coating on pyrite to prevent acid mine drainage. Int J Surf Min Reclam Environ 12:101–104CrossRefGoogle Scholar
  88. 88.
    Vandiviere MM, Evangelou VP (1998) Comparative testing between conventional and microencapsulation approaches in controlling pyrite oxidation. M Geochem Explor 64:161–176CrossRefGoogle Scholar
  89. 89.
    Evangelou VP (1995) Potential microencapsulation of pyrite by artificial inducement of ferric phosphate coatings. J Environ Qual 24:535–542CrossRefGoogle Scholar
  90. 90.
    Bessho M, Wajima T, Ida T, Nishiyama T (2011) Experimental study on prevention of acid mine drainage b silica coating of pyrite waste rocks with amorphous silica solution. Environ Earth Sci 64:311–318CrossRefGoogle Scholar
  91. 91.
    Zhang YL, Evangelou VP (1998) Formation of ferric hydroxide-silica coatings on pyrite and its oxidation behavior. Soil Sci 163:53–62CrossRefGoogle Scholar
  92. 92.
    Fytas K, Bousquet P (2002) Silicate micro-encapsulation of pyrite to prevent acid mine drainage. CIM Bull 95:96–99Google Scholar
  93. 93.
    Satur J, Hiroyoshi N, Tsunekawa M, Ito M, Okamoto H (2007) Carrier-microencapsulation for preventing pyrite oxidation. Int J Miner Process 83:116–124CrossRefGoogle Scholar
  94. 94.
    Jha RKT, Satur J, Hiroyoshi N, Ito M, Tsunekawa M (2012) Suppression of pyrite oxidation by carrier microencapsulation using silicon and catechol. Miner Process Extr Metall 33:89–98CrossRefGoogle Scholar
  95. 95.
    Jha RKT, Satur J, Hiroyoshi N, Ito M, Tsunekawa M (2011) Suppression of floatability of pyrite in coal processing by carrier microencapsulation. Fuel Process Technol 92:1032–1036CrossRefGoogle Scholar
  96. 96.
    Jha RKT, Satur J, Hiroyoshi N, Ito M, Tsunekawa M (2008) Carrier-microencapsulation using Si-catechol complex for suppressing pyrite floatability. Miner Eng 21:889–893CrossRefGoogle Scholar
  97. 97.
    Benzaazoua M, Bussiere B, Kongolo M, McLaughlin J, Marion P (2000) Environmental desulphurization of four Canadian mine tailings using froth flotation. Int J Miner Process 60:57–74CrossRefGoogle Scholar
  98. 98.
    Alam R, Shang JQ (2012) Effect of operating parameters on desulphurization of mine tailings by froth flotation. J Environ Manag 97:122–130CrossRefGoogle Scholar
  99. 99.
    Bois D, Benzaazoua M, Bussiere B, Kongolo M, Poirier P (2005) A feasibility study on the use of desulphurized tailings to control acid mine drainage. CIM Bull 98:e1/1-8Google Scholar
  100. 100.
    Kongolo M, Benzaazoua M, de Donato P, Drouet B, Barres O (2004) The comparison between amine thioacetate and amyl xanthate collector performances for pyrite flotation and its application to tailings desulphurization. Miner Eng 17:505–515CrossRefGoogle Scholar
  101. 101.
    Demers I, Bussiere B, Mbonimpa M, Benzaazoua M (2009) Oxygen diffusion and consumption in low-sulphide tailings covers. Can Geotech J 46:454–469CrossRefGoogle Scholar
  102. 102.
    Demers I, Bussiere B, Benzaazoua M, Mbonimpa M, Blier A (2008) Column test investigatin on the performance of monolayer covers made of desulphurized tailings to prevent acid mine drainage. Miner Eng 21:317–329CrossRefGoogle Scholar
  103. 103.
    Carson AW, Rutherford PM, Burton PJ (2014) Desulphurized tailings serve as a useful soil supplement for mine reclamation. Can J Soil Sci 94:529–541CrossRefGoogle Scholar
  104. 104.
    Dobchuk B, Nichol C, Wilson GW, Aubertin M (2013) Evaluation of a single-layer desulphurized tailings cover. Can Geotech J 50:777–792CrossRefGoogle Scholar
  105. 105.
    Chesworth W, Shelp GS, Shelp BJ (1994) In-situ treatment system for inhibiting the formation of, and for alleviating, acidity in water. Can. Patent. Appl. CA2098511 A1Google Scholar
  106. 106.
    Chesworth W, Shelp GS, Shelp BJ (1997) In-situ treatment system for inhibiting the formation of, and for alleviating, acidity in water. U.S. Patent 5,630,934Google Scholar
  107. 107.
    Ahmed SM (1994) Surface chemical methods of forming hardpan in pyrrhotite tailings and prevention of the acid mine drainage. International Land Reclamation and Mine Drainage Conference and the Third International Conference on the abatement of Acidic Drainage, Pittsburgh, PAGoogle Scholar
  108. 108.
    Ahmed SM (1991) Electrochemical and surface chemical methods for the prevention of the atmospheric oxidation of sulfide tailings. In: Proceedings Second International Conference on the Abatement of Acid Drainage, MontrealGoogle Scholar
  109. 109.
    Ahmed SM, Giziewicz E (1992), Electrochemical studies of iron sulfides in relation to their atmospheric oxidation and prevention of acid drainage. Part-II. In: Proceedings—Electrochemical Society (1992), pp 92–17Google Scholar
  110. 110.
    Shelp G, Chesworth W, Spiers G, Liu L (1994) A demonstration of the feasibility of treating acid mine drainage by an in situ electrochemical method. International land reclamation and mine drainage conference and the third international conference on the abatement of acidic drainage, Pittsburgh, PAGoogle Scholar
  111. 111.
    Shelp GS, Chesworth W, Spiers G (1995) The amelioration of acid mine drainage by an in situ electrochemical method-I. Employing scrap iron as the sacrificial anode. Appl Geochem 10:705–713CrossRefGoogle Scholar
  112. 112.
    Shelp GS, Chesworth W, Spiers G (1996) The amelioration of acid mine drainage by an in situ electrochemical method; part 2: employing aluminium and zinc as sacrificial anodes. Appl Geochem 11:425–432CrossRefGoogle Scholar
  113. 113.
    Lin M, Shelp GS, Seed L, Chesworth W (1999) Electrochemical treatment of sulphide tailings: a laboratory study. Mining and Environment, Sudbury, Ontario, Canada, pp 571–579Google Scholar
  114. 114.
    Lin M, Seed L, Chesworth W, Fyfe J, Brousseau R, Shelp GS (2001) Electrochemical treatment of pyrrhotite tailings: a laboratory study. Mine Water Environ 20:8–16CrossRefGoogle Scholar
  115. 115.
    Brousseau JHR, Seed LP, Lin MY, Shelp GS, Fyfe JD (2000) Electrochemical prevention of acid mine drainage. In: Proceeding of the International Conference on Environmental Issues and Management of Waste in Energy and Mineral Production, 6th, Calgary, Alberta, Canada, pp 539–542Google Scholar
  116. 116.
    Lin M, Seed L, Yetman D, Fyfe J, Chesworth W, Shelp G (2001) Electrochemical cover technology to prevent the formation of acid mine drainage. In: Proceedings of the 25th Annual british Columbia Mine Reclamation Symposium, Campbell River, British Columbia, CanadaGoogle Scholar
  117. 117.
    Lin M, Hayward GL, Seed LP, Shelp GS (2003) Electrochemical cover for the prevention of acid mine drainage—a laboratory test. In: Proceedings of the Sudbury 2003 Mining and the Environment Conference, Sudbury, Ontario, CanadaGoogle Scholar
  118. 118.
    Shelp GS, Brousseau RJH (2005) Electrochemical cover for inhibiting diffusion/infiltration of oxygen into reactive sulphide materials. US Patent 6,866,754Google Scholar
  119. 119.
    Jordan D, Bless D (2008) Mine waste technology program. Electrochemical tailings cover. EPA/600/R-08/095Google Scholar
  120. 120.
    Shelp GS, Chesworth W (2001) Removal of oxygen from water. US Patent 6,309,533Google Scholar
  121. 121.
    Johnson DB, Hallberg KB (2005) Acid mine drainage remediation options: a review. Sci Total Environ 338:3–14CrossRefGoogle Scholar
  122. 122.
    Taylor J, Pape S, Murphy N (2005) A summary of passive and active treatment technologies for acid and metalliferous drainage (AMD). Fifth Australian workshop on acid drainage, FremantleGoogle Scholar
  123. 123.
    Maila MD, Maree JP, Cele LM (2014) Acid mine neutralisation with ammonium hydroxide and desalination with barium hydroxide. Water SA 40:521–528CrossRefGoogle Scholar
  124. 124.
    Zhuang J-M (2009) Acidic rock drainage treatment: a review. Recent Pat Chem Eng 2:238–252CrossRefGoogle Scholar
  125. 125.
    Egiebor NO, Oni B (2007) Acid rock drainage formation and treatment: a review. Asia Pac J Chem Eng 2:47–62CrossRefGoogle Scholar
  126. 126.
    Maree JP, Mujuru M, Bologo V, Daniels N, Mpholoane D (2013) Neutralisation treatment of AMD at affordable cost. Water SA 39:245–250Google Scholar
  127. 127.
    Alakangas L, Andersson E, Mueller S (2013) Neutralization/prevention of acid rock drainage using mixtures of alkaline by-products and sulfidic mine wastes. Environ Sci Pollut Res 20:7907–7916CrossRefGoogle Scholar
  128. 128.
    Perez-Lopez R, Castillo J, Quispe D, Nieto JM (2010) Neutralization of acid mine drainage using the final product from CO2 emissions capture with alkaline paper mill waste. J Hazard Mater 177:762–772CrossRefGoogle Scholar
  129. 129.
    Park JH, Edraki M, Mulligan D, Jang HS (in press) The application of coal combustion by-products in mine site rehabilitation. J Clean ProdGoogle Scholar
  130. 130.
    Gitari WM, Petrik LF, Key DL, Okujeni C (2013) Inorganic contaminants attenuation in acid mine drainage by fly ash and its derivatives: column experiments. Int J Environ Pollut 51:32–56CrossRefGoogle Scholar
  131. 131.
    Tolonen E-T, Sarpola A, Hu T, Ramo J, Lassi U (2014) Acid mine drainage treatment using by-products from quicklime manufacturing as neutralization chemicals. Chemosphere 117:419–424CrossRefGoogle Scholar
  132. 132.
    Djedidi Z, Medard B, Cheikh RB, Mercier G, Tyagi RD, Blais J-F (2009) Comparative study of dewatering characteristics of metal precipitates generated during treatment synthetic polymetallic and AMD solutions. Hydrometallurgy 98:247–256CrossRefGoogle Scholar
  133. 133.
    McKinnon W, Choung JW, Xu Z, Finch JA (2000) Magnetic seed in ambient temperature ferrite process applied to acid mine drainage treatment. Environ Sci Technol 34:2576–2581CrossRefGoogle Scholar
  134. 134.
    Ouakibi O, Loqman S, Hakkou R, Benzaazoua M (2013) The potential use of phosphatic limestone wastes in the passive treatment of AMD: a laboratory study. Mine Water Environ 32:266–277CrossRefGoogle Scholar
  135. 135.
    Bosse B, Bussiere B, Hakkou R, Maqsoud A, Benzaazoua M (2013) Assessment of phosphate limestone wastes as a component of a store-and-release cover in a semiarid climate. Mine Water Environ 32:152–167CrossRefGoogle Scholar
  136. 136.
    Genty T, Bussiere B, Potvin R, Benzaazoua M, Zagury GJ (2012) Dissolution of calcitic marble and dolomitic rock in high iron concentrated acid mine drainage: application to anoxic limestone drains. Environ Earth Sci 66:2387–2401CrossRefGoogle Scholar
  137. 137.
    Cui M, Jang M, Cho S-H, Khim J, Cannon FS (2012) A continuous pilot-scale system using coal-mine drainage sludge to treat acid mine drainage contaminated with high concentrations of Pb, Zn, and other heavy metals. J Hazard Mater 215–216:122–128CrossRefGoogle Scholar
  138. 138.
    Cravotta CA III (2010) Abandoned mine drainage in the Swatara Creek Basin, Southern anthracite coalfield, Pennsylvania, USA: 2. Performance of treatment systems. Mine Water Environ 29:200–216CrossRefGoogle Scholar
  139. 139.
    Park S-M, Yoo J-C, Ji S-W, Yang J-S, Baek K (2013) Selective recovery of Cu, Zn, and Ni from acid mine drainage. Environ Geochem Health 35:735–743CrossRefGoogle Scholar
  140. 140.
    Seo E-Y, Cheong Y-W, Yim G-J, Ji S-W, Min K-W (2014) Effect of oxidation on selective precipitation of dissolved Fe, Al and Mn in acid mine drainage during neutralization. J Korean Soc Miner Energy Res Eng 51:232–239Google Scholar
  141. 141.
    Kim JJ, Kim YH, Hwang JA, Lim WT, Lee MH (2014) Recovery efficiency of dissolved metal in acid mine drainage. 248th ACS National Meeting & Exposition, San Francisco, CA, United StatesGoogle Scholar
  142. 142.
    Chen T, Yan B, Lei C, Xiao X (2014) Pollution control and metal resource recovery for acid mine drainage. Hydrometallurgy 147–148:112–119CrossRefGoogle Scholar
  143. 143.
    Menezes JCSS, Silva RA, Arce IS, Schneider IAH (2010) Production of a poly-alumino-iron sulphate coagulant by chemical precipitation of a coal mining acid drainage. Miner Eng 23:249–251CrossRefGoogle Scholar
  144. 144.
    Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92:407–418CrossRefGoogle Scholar
  145. 145.
    Mokone TP, van Hille RP, Lewis AE (2012) Metal sulphides from wastewater: assessing the impact of supersaturation control strategies. Water Res 46:2088–2100CrossRefGoogle Scholar
  146. 146.
    Lewis AE (2010) Review of metal sulphide precipitation. Hydrometallurgy 104:222–234CrossRefGoogle Scholar
  147. 147.
    Reis FD, Silva AM, Cunha EC, Leao VA (2013) Application of sodium- and biogenic sulfide to the precipitation of nickel in a continuous reactor. Sep Purif Technol 120:346–353CrossRefGoogle Scholar
  148. 148.
    Luptakova A, Ubaldini S, Macingova E, Fornari P, Giuliano V (2012) Application of physical-chemical and biological-chemical methods for heavy metals removal from acid mine drainage. Process Biochem 47:1633–1639CrossRefGoogle Scholar
  149. 149.
    Luptakova A, Ubaldini S, Macingova E, Kotulicova I (2012) Study of precipitation methods for elimination of heavy metals from acid mine drainage. Nova Biotechnol Chim 11:133–138Google Scholar
  150. 150.
    Xingyu L, Gang Z, Xiaoqiang W, Laichang Z, Jiankang W, Renman R (2013) A novel low pH sulfidogenic bioreactor using activated sludge as carbon source to treat acid mine drainage (AMD) and recorery metal sulfides: Pilot scale study. Miner Eng 48:51–55CrossRefGoogle Scholar
  151. 151.
    Hedrich S, Johnson DB (2014) Remediation and selective recovery of metals from acidic mine waters using novel modular bioreactors. Environ Sci Technol 48:12206–12212CrossRefGoogle Scholar
  152. 152.
    Matlock MM, Henke KR, Atwood DA (2002) Effectiveness of commercial reagents for heavy metal removal from water with new insights for future chelate designs. J Hazard Mater B92:129–142CrossRefGoogle Scholar
  153. 153.
    Matlock MM, Howerton BS, Atwood DA (2002) Chemical precipitation of heavy metals from acid mine drainage. Water Res 36:4757–4764CrossRefGoogle Scholar
  154. 154.
  155. 155.
    Turhanen P, Peraniemi S, Vepsalainen J (2012) Method for collecting metals. WO 2012(131170):A1Google Scholar
  156. 156.
    Tyco Laboratories, Inc. (1972) Electrochemical treatment of acid mine drainage. EPA 14010 FNQGoogle Scholar
  157. 157.
    Stiller, AH (1985). US Patent 4,561,948Google Scholar
  158. 158.
    Treharne RW, Wright DE (1974) Acid mine water treatment process. US Patent 3,823,081Google Scholar
  159. 159.
    Simpson AE, Buckley CA (1988) The removal of sulphuric acid from natural and industrial waste waters. Desalination 70:431–442CrossRefGoogle Scholar
  160. 160.
    Voortman WJ, Simpson AE, Kerr CA, Buckley CA (1992) Application of electrochemical membrane processes to the treatment of aqueous effluent streams. Water Sci Technol 25:329–337Google Scholar
  161. 161.
    Friedrich H-J, Knappik R (1998) Process for increasing the pH of acidic water. EP0814060Google Scholar
  162. 162.
    Bunce NJ, Chartrand M, Keech P (2001) Electrochemical treatment of acidic aqueous ferrous sulfate and copper sulfate as models for acid mine drainage. Wat Res 18:4410–4416CrossRefGoogle Scholar
  163. 163.
    Chartrand MMG, Bunce NJ (2003) Electrochemical remediation of acid mine drainage. J Appl Electrochem 33:259–264CrossRefGoogle Scholar
  164. 164.
    Wang JW, Bejan D, Bunce NJ (2003) Removal of arsenic from synthetic acid mine drainage by electrochemical pH adjustment and coprecipitation with iron hydroxide. Environ Sci Technol 37:4500–4506CrossRefGoogle Scholar
  165. 165.
    Wang JW, Bejan D, Bunce NJ (2005) Electrochemical method for remediation of arsenic-contaminated nickel electrorefining baths. Ind Eng Chem Res 44:3384–3388CrossRefGoogle Scholar
  166. 166.
    Pierce ML, Moore CB (1982) Adsorption of arsenite and arsenate on amorphous iron hydroxide. Water Res 16:1247–1253CrossRefGoogle Scholar
  167. 167.
    Raven KP, Jain A, Loeppert RH (1998) Arsenite and arsenate adsorption on ferrihydrite: kinetics, equilibrium, and adsorption envelopes. Environ Sci Technol 32:344–349CrossRefGoogle Scholar
  168. 168.
    Kim J-Y, Davis AP, Kim K-W (2003) Stabilization of available arsenic in highly contaminated mine tailings using iron. Environ Sci Technol 37:189–195CrossRefGoogle Scholar
  169. 169.
    Buzzi DC, Viegas LS, Rodrigues MAS, Bernardes AM, Tenorio JAS (2013) Water recovery from acid mine drainage by electrodialysis. Miner Eng 40:82–89CrossRefGoogle Scholar
  170. 170.
    Marti-Calatayud MC, Buzzi DC, Garcia-Gabaldon M, Ortega E, Bernardes AM, Tenorio JAS, Perez-Herranz V (2014) Sulfuric acid recovery from acid mine drainage by means of electrodialysis. Desalination 343:120–127CrossRefGoogle Scholar
  171. 171.
    Murillo-Rivera B, Gonzales I, Oropeza-Guzman MT, Escobar-Guerrero V, Sumbarda-Ramos EG, Teutli-Leon MMM (2010) Evaluation of lead removal from sandy soils using different electrolytes in electrokinetic experiments: prospective for remediation of a real site contaminated with mining wastes. J Appl Electrochem 40:1145–1152CrossRefGoogle Scholar
  172. 172.
    Isosaari P, Sillanpaa M (2012) Effects of oxalate and phosphate on electrokinetic removal of arsenic from mine tailings. Sep Purif Technol 86:26–34CrossRefGoogle Scholar
  173. 173.
    Ryu B-G, Park S-W, Baek K, Yang J-S (2009) Pulsed electrokinetic decontamination of agricultural lands around abandoned mines contaminated with heavy metals. Sep Sci Technol 44:2421–2436CrossRefGoogle Scholar
  174. 174.
    Hansen HK, Rojo A, Ottosen LM (2007) Electrokinetic remediation of copper mine tailings. Implementing bipolar electrodes. Electrochim Acta 52:3355–3359CrossRefGoogle Scholar
  175. 175.
    Rojo A, Hansen HK, Monardez O (2014) Electrokinetic remediation of mine tailings by applying a pulsed variable electric field. Mater Eng 55:52–56Google Scholar
  176. 176.
    Rojo A, Hansen HK, Cubillos M (2012) Electrokinetic remediation using pulsed sinusoidal electric field. Electrochim Acta 86:124–129CrossRefGoogle Scholar
  177. 177.
    Rojo A, Hansen HK, Agramonte M (2011) Electrokinetic remediation with high frequency sinusoidal electric field. Sep Purif Technol 79:139–143CrossRefGoogle Scholar
  178. 178.
    Virkutyte J, Sillanpää M, Latostenmaa P (2002) Electrokinetic soil remediation-critical overview. Sci Total Environ 289:97–121CrossRefGoogle Scholar
  179. 179.
    Abou-Shady A, Peng C (2012) New process for ex situ electrokinetic pollutant removal I: process evaluation. J Ind Eng Chem 18:2162–2176CrossRefGoogle Scholar
  180. 180.
    Rojo A, Hansen HK, Guerra P (2009) Electrodialytic remediation of copper mine tailings pulps. Sep Sci Technol 44:2234–2244CrossRefGoogle Scholar
  181. 181.
    Rojo A, Cubillos L (2009) Electrodialytic remediation of copper mine tailings using bipolar electrodes. J Hazard Mater 168:1177–1183CrossRefGoogle Scholar
  182. 182.
    Hansen HK, Rojo A, Pino D, Ottosen LM, Ribeiro AB (2008) Electrodialytic remediation of suspended mine tailings. J Environ Sci Heal A 43:832–836CrossRefGoogle Scholar
  183. 183.
    Hansen HK, Rojo A, Ottosen LM (2005) Electrodialytic remediation of copper mine tailings. J Hazard Mater B117:179–183CrossRefGoogle Scholar
  184. 184.
    Rojo A, Hansen HK, Ottosen LM (2006) Electrodialytic remediation of copper mine tailings: comparing different operational conditions. Mineral Eng 19:500–504CrossRefGoogle Scholar
  185. 185.
    Rojo A, Hansen HK, del Campo J (2010) Electrodialytic remediation of copper mine tailings with sinusoidal electric field. J Appl Electrochem 40:1095–1100CrossRefGoogle Scholar
  186. 186.
    Hansen HK, Rojo A (2007) Testing pulsed electric fields in electroremediation of copper mine tailings. Electrochim Acta 52:3399–3405CrossRefGoogle Scholar
  187. 187.
    Hansen HK, Lamas V, Gutierrez C, Nunez P, Rojo A, Cameselle C, Ottosen LM (2013) Electro-remediation of copper mine tailings. Comparing copper removal efficiencies for two tailings of different age. Mineral Eng 41:1–8CrossRefGoogle Scholar
  188. 188.
    Hansen HK, Ribeiro AB, Mateus EP, Ottosen LM (2007) Diagnostic analysis of electrodialysis in mine tailing materials. Electrochim Acta 52:3406–3411CrossRefGoogle Scholar
  189. 189.
    Jenke DR, Diebold FE (1984) Electroprecipitation treatment of acid mine wastewater. Water Res 18:855–859CrossRefGoogle Scholar
  190. 190.
    Smit JJ (2001) Removal of pollutants from effluents with electrochemical treatment. US Patent 6,174,444Google Scholar
  191. 191.
    Smith KW, Sloan RL (2010) Coagulants made in situ from sulfate-containing water and uses therewith. US Patent 0187130 A1Google Scholar
  192. 192.
    Orescanin V, Kollar R (2012) A combined CaO/electrochemical treatment of the acid mine drainage from the Robule Lake. J Environ Sci Health A 47:1186–1191CrossRefGoogle Scholar
  193. 193.
    Radic S, Vujcic V, Cvetkovic Z, Cvjetko P, Orescanin V (2014) The efficiency of combined CaO/electrochemical treatment in removal of acid mine drainage induced toxicity and genotoxicity. Sci Total Environ 466–467:84–89CrossRefGoogle Scholar
  194. 194.
    Del Angel P, Carreno G, Nava JL, Martinez MT, Ortiz J (2014) Removal of arsenic and sulfates from an abandoned mine drainage by electrocoagulation. Influence of hydrodynamic and current density. Int J Electrochem Sci 9:710–719Google Scholar
  195. 195.
    Heidman I, Calmano W (2008) Removal of Zn(II), Cu(II), Ni(II), Ag(I), and Cr(VI) present in aqueous solutions by aluminum electrocoagulation. J Hazard Mater 152:934–941CrossRefGoogle Scholar
  196. 196.
    Kabdasli I, Arslan T, Olmez-YHanci T, Arslan-Alaton I, Tunay O (2009) Complexing agent and heavy metal removals from metals plating effluent by electrocoagulation with stainless steel electrodes. J Hazard Mater 165:838–845CrossRefGoogle Scholar
  197. 197.
    Kumarasinghe D, Pettigrew L, Nghiem LD (2009) Removal of heavy metals from mining impacted water by and electrocoagulation-ultrafiltration hybrid process. Desalin Water Treatment 11:66–72CrossRefGoogle Scholar
  198. 198.
    Oncel MS, Muhcu A, Demirbas E, Kobya M (2013) A comparative study of chemical precipitation and electrocoagulation for treatment of coal acid drainage wastewater. J Environ Chem Eng 1:989–995CrossRefGoogle Scholar
  199. 199.
    Durawski KL, van Genuchten CM, Delaire C, Amrose SE, Gadgil AJ, Mohseni M (2015) Production and transformation of mixed-valent nanoparticles generated by Fe(0) electrocoagulation. Environ Sci Technol 49:2171–2179CrossRefGoogle Scholar
  200. 200.
    Gomes J, Cocke D, Moreno H, Tran D, Mahmud A, Das K, Guttula M (2009) Green rust: its electrochemical generation, characterization and implications. In: Howard SM (ed) Proceeding of sessions and symposia held during the TMS annual meeting and exhibition, EPD Congress, pp 211–218Google Scholar
  201. 201.
    Frau F, Medas D, Da Pelo S, Wanty RB, Cidu R (2015) Environmental effects on the aquatic system and metal discharge to the Mediterranean Sea from a near-neutral zinc-ferrous sulfate mine drainage. Water Air Soil Pollut 226:1–17CrossRefGoogle Scholar
  202. 202.
    Johnson CA, Freyer G, Fabisch M, Caraballo MA, Kusel K, Hochella MF Jr (2014) Observation and assessment of iron oxide and green rust nanoparticles in metal-polluted mine drainage within a steep redox gradient. Environ Chem 11:377–391CrossRefGoogle Scholar
  203. 203.
    Bearcock JM, Perkins WT, Pearce NJG (2011) Laboratory studies using naturally occurring “green rust” to aid metal mine water remediation. J Hazard Mater 190:466–473CrossRefGoogle Scholar
  204. 204.
    Clarke RL, Turner AD, Jones CP, Walsh FC (1996) Some electrochemical techniques for the remediation of acid mine drainage problems. International forum on Electrolysis in the chemical Industry: The Power of Electrochemistry, 10th, Clearwater Beach, Florida, Nov 10–14Google Scholar
  205. 205.
    Hatfield TL, Kleven TL, Pierce DT (1996) Electrochemical remediation of metal-bearing wastewaters. Part I: copper removal from simulated mine drainage water. J Appl Electrochem 26:567–574CrossRefGoogle Scholar
  206. 206.
    Hatfield TL, Pierce DT (1998) Electrochemical remediation of metal-bearing wastewaters. Part II: corrosion-based inhibition of copper removal by iron (III). J Appl Electrochem 28:397–403CrossRefGoogle Scholar
  207. 207.
    Loutfy RO, Bharucha NR (1978) Electrowinning of copper in presence of high concentration of iron. US 4,124,460Google Scholar
  208. 208.
    Paidar M, Bouzek K, Laurich M, Thonstad J (2000) Application of a three-dimensional electrode to the electrochemical removal of copper and zinc ions from diluted solutions. Water Environ Res 72:618–625CrossRefGoogle Scholar
  209. 209.
    Gorgievski M, Bozic D, Stankovic V, Bogdanovic G (2009) Copper electrowinning form acid mine drainage: a case study from the closed mine Cerovo. J Hazard Mater 170:716–721CrossRefGoogle Scholar
  210. 210.
    Ubaldine S, Luptakova A, Fornari P, Yoplac E (2013) Application of innovative remediation processes to mining effluents contaminated by heavy metals. In: Proceedings of the 16th international conference on heavy metals in the environment 1:1–4Google Scholar
  211. 211.
    Cheng S, Dempsey BA, Logan BE (2007) Electricity generation from synthetic acid mine drainage (AMD) water using fuel cell technologies. Environ Sci Technol 41:8149–8153CrossRefGoogle Scholar
  212. 212.
    Cheng S, Jang J-H, Dempsey BA, Logan BE (2011) Efficient recovery of nano-sized iron oxide particles from synthetic acid-mine drainage (AMD) water using fuel cell technologies. Water Res 45:303–307CrossRefGoogle Scholar
  213. 213.
    Song W, Zhai L-F, Cui Y-Z, Sun M, Jiang Y (2013) Carbonate-mediated Fe(II) oxidation on the air-cathode fuel cell: a kinetic model in terms of Fe(II) speciation. J Phys Chem A 117:4627–4635CrossRefGoogle Scholar
  214. 214.
    Sun M, Song W, Zhai L-F, Ru X-R, Cui Y-Z (2013) Elucidating electro-oxidation kinetics of Fe(II) in the anode of air-cathode fuel cells from an Fe(II) speciation perspective. Chem Eng J 228:781–789CrossRefGoogle Scholar
  215. 215.
    Sun M, Ru X-R, Zhai L-F (2015) In-situ fabrication of supported iron oxides from synthetic acid mine drainage: high catalytic activities and good stabilities towards electro-Fenton reaction. Appl Catal B-Environ 165:103–110CrossRefGoogle Scholar
  216. 216.
    Sun M, Song W, Zhai L-F, Tong Z-H (2014) Iron-contamination-induced performance degradation of an iron-fed fuel cell. J Power Sources 248:6–14CrossRefGoogle Scholar
  217. 217.
    Lu Z, Chang D, Ma J, Huang G, Cai L, Zhang L (2015) Behavior of metal ions in bioelectrochemical systems: a review. J Power Sources 275:243–260CrossRefGoogle Scholar
  218. 218.
    Wang H, Ren ZJ (2014) Bioelectrochemical metal recovery from wastewater: a review. Water Res 66:219–232CrossRefGoogle Scholar
  219. 219.
    Wang H, Ren ZJ (2013) A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnol Adv 31:1796–1807CrossRefGoogle Scholar
  220. 220.
    Lefebvre O, Neculita CM, Yue X, Ng HY (2012) Bioelectrochemical treatment of acid mine drainage dominated with iron. J Hazard Mater 241–242:411–417CrossRefGoogle Scholar
  221. 221.
    Lefebvre O, Ha Nguyen TT, Al-Manun A, Chang IS, Ng HY (2010) T-RFLP reveals high β-proteobacteria diversity in microbial fuel cells enriched with domestic wastewater. J Appl Microbiol 109:839–850CrossRefGoogle Scholar
  222. 222.
    Luo H, Liu G, Zhang R, Bai Y, Fu S, Hou Y (2014) Heavy metal recovery combined with H2 production from artificial acid mine drainage using the microbial electrolysis cell. J Hazard Mater 270:153–159CrossRefGoogle Scholar
  223. 223.
    Angelov A, Bratkova S, Loukanov A (2013) Microbial fuel cell based on electroactive sulfate-reducing biofilm. Energy Convers Manag 67:283–286CrossRefGoogle Scholar
  224. 224.
    Sharma M, Bajracharya S, Gildemin S, Patil SA, Alvarez-Gallego Y, Pant D, Rabaey K, Dominguez-Benetton X (2014) A critical revisit of the key parameters used to describe microbial electrochemical systems. Electrochim Acta 140:191–208CrossRefGoogle Scholar
  225. 225.
    Lacroix R, Da Silva S, Gaig MV, Rousseau R, Delia M-L, Bergel A (2014) Modelling potential/current distribution in microbial electrochemical systems shows how the optimal bioanode architecture depends on electrolyte conductivity. Phys Chem Chem Phys 16:22892–22902CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Chemistry, Electrochemical Technology CentreUniversity of GuelphGuelphCanada

Personalised recommendations