Journal of Applied Electrochemistry

, Volume 45, Issue 9, pp 1005–1012 | Cite as

Preparation and characterization of electrospun LaCoO3 fibers for oxygen reduction and evolution in rechargeable Zn–air batteries

  • J. ShimEmail author
  • K. J. Lopez
  • H.-J. Sun
  • G. Park
  • J.-C. An
  • S. Eom
  • S. Shimpalee
  • J. W. Weidner
Research Article
Part of the following topical collections:
  1. Batteries


LaCoO3 fibers were synthesized through the calcination of an electrospun polymer-metal precursor fiber. The electrochemical performance of these fibers for oxygen reduction and evolution reactions was characterized in a KOH solution. Additionally, the electrochemical properties were compared with those of a conventional PtRu/C catalyst and a LaCoO3 powder, which was synthesized using the Pechini method. The LaCoO3 fibers had a greater surface area compared with the powder, whereas the crystal structures of the fibers and powder were notably similar. The LaCoO3 fibers demonstrated better electrochemical properties compared with the LaCoO3 powder, which was attributed to the increased surface area and number of active sites in the fibers.


Zn–air battery Cathode Perovskite LaCoO3 Electrospinning Fiber Oxygen reduction Oxygen evolution 



This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (MEST) (NRF-2012-M1A2A2-029538).


  1. 1.
    Neburchilov V, Wang H, Martin JJ, Qu W (2010) A review on air cathodes for zinc–air fuel cells. J Power Sour 195:1271–1291CrossRefGoogle Scholar
  2. 2.
    Park DW, Kim JW, Lee JK, Lee J (2012) Rechargeable Zn–air energy storage cells providing high power density. Appl Chem Eng 23:359–366Google Scholar
  3. 3.
    Chen Z, Choi JY, Wang H, Li H, Chen Z (2011) Highly durable and active non-precious air cathode catalyst for zinc air battery. J Power Sour 196:3673–3677CrossRefGoogle Scholar
  4. 4.
    Chen Z, Yu A, Higgins D, Li H, Wang H, Chen Z (2012) highly active and durable core-corona structured bifunctional catalyst for rechargeable metal–air battery application. Nano Lett 12:1946–1952CrossRefGoogle Scholar
  5. 5.
    Zhou W, Sunarso J (2013) Enhancing bi-functional electrocatalytic activity of perovskite by temperature shock: a case study of LaNiO3−δ. J Phys Chem Lett 4:2982–2988CrossRefGoogle Scholar
  6. 6.
    Zhu C, Nobuta A, Nakatsugawa I, Akiyama T (2013) Solution combustion synthesis of LaMO3 (M = Fe Co, Mn) perovskite nanoparticles and the measurement of their electrocatalytic properties for air cathode. Int J Hydrogen Energy 38:13238–13248CrossRefGoogle Scholar
  7. 7.
    Sunarso J, Torriero AAJ, Zhou W, Howlett PC, Forsyth M (2012) Oxygen reduction reaction activity of La-based perovskite oxides in alkaline medium: a thin-film rotating ring-disk electrode study. J Phys Chem C 116:5827–5834CrossRefGoogle Scholar
  8. 8.
    Huang K, Lee HY, Goodenough JB (1998) Sr- and Ni-doped LaCoO3 and LaFeO3 Perovskites. J Electrochem Soc 145:3220–3227CrossRefGoogle Scholar
  9. 9.
    Xiong G, Zhi ZL, Yang X, Lu L, Wang X (1997) Characterization of perovskite-type LaCoO3 nanocrystals prepared by a stearic acid sol–gel process. J Mater Sci Lett 16:1064–1068CrossRefGoogle Scholar
  10. 10.
    Armelao L, Bandoli G, Barreca D, Bettinelli M, Bottaro G, Caneschi A (2002) Synthesis and characterization of nanophasic LaCoO3 powders. Surf Interface Anal 34:112–115CrossRefGoogle Scholar
  11. 11.
    Malkhandi S, Yang B, Manohar AK, Manivannan A, Surya Prakash GK, Narayanan SR (2012) Electrocatalytic properties of nanocrystalline calcium-doped lanthanum cobalt oxide for bifunctional oxygen electrodes. J Phys Chem Lett 3:967–972CrossRefGoogle Scholar
  12. 12.
    Weidenkaff A, Ebbinghaus SG, Lippert T (2002) Ln1-xAxCoO3 (Ln = Er, La; A = Ca, Sr)/carbon nanotube composite materials applied for rechargeable Zn/air batteries. Chem Mater 14:1797–1805CrossRefGoogle Scholar
  13. 13.
    Teng F, Liang S, Gaugeu B, Zong R, Yao W, Zhu Y (2007) Carbon nanotubes-templated assembly of LaCoO3 nanowires at low temperatures and its excellent catalytic properties for CO oxidation. Catal Comm 8:1748–1754CrossRefGoogle Scholar
  14. 14.
    Lin T (2011) Nanofibers – Production. Properties and Functional Application, In Tech, Rijeka, Croatia p287Google Scholar
  15. 15.
    Dong B, Li Z, Li Z, Xu X, Song M, Zheng W, Wang C, Al-Deyab SS, El-Newehy M (2010) Highly efficient LaCoO3 nanofibers catalysts for photocatalytic degradation of rhodamine B. J Am Ceram Soc 93:3587–3590CrossRefGoogle Scholar
  16. 16.
    Chen CQ, Li W, Cao CY, Song WG (2010) Enhanced catalytic activity of perovskite oxide nanofibers for combustion of methane in coal mine ventilation air. J Mater Chem 20:6968–6974CrossRefGoogle Scholar
  17. 17.
    Xu W, Shi Y, Hadim H (2010) The fabrication of thermoelectric La0.95Sr0.05CoO3 nanofiber and Seebeck coefficient measurement. Nanotechnology 21:395303CrossRefGoogle Scholar
  18. 18.
    Park HW, Lee DU, Zamani P, Seo MH, Nazar LF, Chen Z (2014) Electrospun porous nanorod perovskite oxide/nitrogen-doped graphene composite as a bi-functional catalyst for metal air batteries. Nano Energy 10:192–200CrossRefGoogle Scholar
  19. 19.
    Pechini MP (1967) Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor. US Patent No 3,330,697Google Scholar
  20. 20.
    Popa M, Kakihana M (2002) Synthesis of lanthanum cobaltite (LaCoO3) by the polymerizable complex route. Solid State Ion 151:251–257CrossRefGoogle Scholar
  21. 21.
    Kuo JH, Anderson HU, Sparlin DM (1990) Oxidation-reduction behavior of undoped and Sr-doped LaMnO3: defect structure, electrical conductivity, and thermoelectric power. J Solid State Chem 87:55–63CrossRefGoogle Scholar
  22. 22.
    Worayingyong A, Kangvansura P, Ausadasuk S, Praserthdam P (2008) The effect of preparation: Pechini and Schiff base methods, on adsorbed oxygen of LaCoO3 perovskite oxidation catalysts. Colloids Surf A 315:217–225CrossRefGoogle Scholar
  23. 23.
    Shim J, Park YS, Lee HK, Park SG, Lee JS (1996) Oxygen reduction reaction of La1-xCaxCoO3 of gas diffusion electrode in alkaline fuel cell. J Kor Ind Eng Chem 7:992–998Google Scholar
  24. 24.
    Ahn S, Kim K, Kim H, Nam S, Eom S (2010) Synthesis and electrochemical performance of La0.7Sr0.3Co1−xFexO3 catalysts for zinc air secondary batteries. Phys Scr T139:1402–1404CrossRefGoogle Scholar
  25. 25.
    Zhao J, Cheng Y, Yan X, Sun D, Zhu F, Xue Q (2012) Magnetic and electrochemical properties of CuFe2O4 hollow fibers fabricated by simple electrospinning and direct annealing. Cryst Eng Commun 14:5879–5885CrossRefGoogle Scholar
  26. 26.
    Lee MJ, Jun JH, Jung JS, Kim YR, Lee SH (2005) Catalytic activities of perovskite-type LaBO3 (B = Fe Co, Ni) oxides for partial oxidation of methane. Bull Korean Chem Soc 26:1591–1596CrossRefGoogle Scholar
  27. 27.
    Poux T, Napolskiy FS, Dintzer T, Kéranguéven G, Istomin GY, Tsirlina GA, Antipov EV, Savinov ER (2012) Dual role of carbon in the catalytic layers of perovskite/carbon composites for the electrocatalytic oxygen reduction reaction. Catal Today 189:83–92CrossRefGoogle Scholar
  28. 28.
    Han X, Cheng F, Zhang T, Yang J, Hu Y, Chen J (2014) Hydrogenated uniform Pt clusters supported on porous CaMnO3 as a bifunctional electrocatalyst for enhanced oxygen reduction and evolution. Adv Mater 26:2047–2051CrossRefGoogle Scholar
  29. 29.
    Li H, Liu HO, Jong Z, Qu W, Geng D, Sun X, Wang H (2011) Nitrogen-doped carbon nanotubes with high activity for oxygen reduction in alkaline media. Int J Hydrogen Energy 36:2258–2265CrossRefGoogle Scholar
  30. 30.
    Kinoshita K (1988) Carbon: electrochemical and physicochemical Properties. Wiley, New YorkGoogle Scholar
  31. 31.
    Zhang J (2008) PEM fuel cell electrocatalysts and catalyst layers: fundamentals and applications. Springer, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • J. Shim
    • 1
    Email author
  • K. J. Lopez
    • 1
  • H.-J. Sun
    • 2
  • G. Park
    • 3
  • J.-C. An
    • 4
  • S. Eom
    • 5
  • S. Shimpalee
    • 6
  • J. W. Weidner
    • 6
  1. 1.Department of Nano & Chemical EngineeringKunsan National UniversityJeonbukKorea
  2. 2.Department of Material Science & EngineeringKunsan National UniversityJeonbukKorea
  3. 3.Department of ChemistryKunsan National UniversityJeonbukKorea
  4. 4.Carbon Materials Research GroupResearch Institute of Industrial Science & TechnologyGyeongbukKorea
  5. 5.Battery Research CenterKorea Electrotechnology Research InstituteChangwonKorea
  6. 6.Department of Chemical Engineering, Center for Electrochemical EngineeringUniversity of South CarolinaColumbiaUSA

Personalised recommendations