Journal of Applied Electrochemistry

, Volume 45, Issue 9, pp 953–962 | Cite as

Electrochemical synthesis of palladium dendrites on carbon support and their enhanced electrocatalytic activity towards formic acid oxidation

  • Kranthi Kumar Maniam
  • Raghuram ChettyEmail author
Research Article
Part of the following topical collections:
  1. Fuel cells


Palladium (Pd) dendrites on carbon black support were synthesized by a simple template/surfactant-free electrochemical deposition. In comparison to Pd spherical deposit obtained on non-activated carbon, Pd deposited on an electrochemically activated carbon displayed a dendritic morphology with increased electrochemical surface area and showed enhanced catalytic activity for formic acid oxidation. The effect of electrochemical activation and deposition cycles were studied in relation to the growth and morphological features of Pd deposit. Scanning electron micrographs and X-ray diffraction studies showed a transition in Pd morphology from spheres to dendrites when the carbon support was subjected to varying cycles of electrochemical activation, prior to Pd deposition. Raman and X-ray photoelectron spectra results showed that the defects induced during electrochemical activation on carbon played a major role in tailoring the Pd morphology.


Electrochemical activation Electrodeposition Formic acid reaction Palladium Dendrites Fuel cells 



We thank the Department of Science and Technology (DST), Government of India for the financial assistance under SERC Fast Track Scheme. We also thank DST-FIST for providing the instrumentation facility to the Department of Chemical Engineering at IIT Madras.

Supplementary material

10800_2015_860_MOESM1_ESM.docx (314 kb)
Supplementary material 1 (DOCX 314 kb)


  1. 1.
    Guo S, Wang E (2011) Noble metal nanomaterials: controllable synthesis and application in fuel cells and analytical sensors. Nano Today 6:240–264. doi: 10.1016/j.nantod.2011.04.007 CrossRefGoogle Scholar
  2. 2.
    Shao M (2011) Palladium-based electrocatalysts for hydrogen oxidation and oxygen reduction reactions. J Power Sources 196:2433–2444. doi: 10.1016/j.jpowsour.2010.10.093 CrossRefGoogle Scholar
  3. 3.
    Durand J, Teuma E, Gómez M (2008) An overview of palladium nanocatalysts: surface and molecular reactivity. Eur J Inorg Chem 2008:3577–3586. doi: 10.1002/ejic.200800569 CrossRefGoogle Scholar
  4. 4.
    Guo L, Searson PC (2010) On the influence of the nucleation overpotential on island growth in electrodeposition. Electrochim Acta 55:4086–4091. doi: 10.1016/j.electacta.2010.02.038 CrossRefGoogle Scholar
  5. 5.
    Corduneanu O, Diculescu VC (2008) Shape-controlled palladium nanowires and nanoparticles electrodeposited on carbon electrodes. J Electroanal Chem 624:97–108. doi: 10.1016/j.jelechem.2008.07.034 CrossRefGoogle Scholar
  6. 6.
    Mohanty US (2011) Electrodeposition: a versatile and inexpensive tool for the synthesis of nanoparticles, nanorods, nanowires, and nanoclusters of metals. J Appl Electrochem 41:257–270. doi: 10.1007/s10800-010-0234-3 CrossRefGoogle Scholar
  7. 7.
    Thirumalairajan S, Girija K, Ganesh V et al (2013) Novel synthesis of LaFeO3 nanostructure dendrites: a systematic investigation of growth mechanism, properties, and biosensing for highly selective determination of neurotransmitter compounds. ACS Cryst Growth Des 13:291–302CrossRefGoogle Scholar
  8. 8.
    Zhang HUI, Jin M, Xiong Y et al (2013) Shape controlled synthesis of Pd nanocrystals and their catalytic applications. Acc Chem Res 46:1783–1794. doi: 10.1021/ar300209w CrossRefGoogle Scholar
  9. 9.
    Patra S, Viswanath B, Barai K et al (2010) High-surface step density on dendritic Pd leads to exceptional catalytic activity for formic acid oxidation. ACS Appl Mater Interface 2:2965–2969. doi: 10.1021/am100647u CrossRefGoogle Scholar
  10. 10.
    Mohanty A, Garg N, Jin R (2010) A universal approach to the synthesis of noble metal nanodendrites and their catalytic properties Angew. Chem Int Ed 49:4962–4966. doi: 10.1002/anie.201000902 CrossRefGoogle Scholar
  11. 11.
    Zheng X, Zhu L, Wang X et al (2004) A simple mixed surfactant route for the preparation of noble metal dendrites. J Cryst Growth 260:255–262. doi: 10.1016/j.jcrysgro.2003.08.006 CrossRefGoogle Scholar
  12. 12.
    Libbrecht KG (2005) The physics of snow crystals. Rep Prog Phys 68:855–895. doi: 10.1088/0034-4885/68/4/R03 CrossRefGoogle Scholar
  13. 13.
    Arjona N, Guerra-Balcázar M, Cuevas-Muñiz FM et al (2013) Electrochemical synthesis of flower-like Pd nanoparticles with high tolerance toward formic acid electrooxidation. RSC Adv 3:15727–15733. doi: 10.1039/c3ra41681j CrossRefGoogle Scholar
  14. 14.
    Zhang G, Sun S, Cai M et al (2013) Porous dendritic platinum nanotubes with extremely high activity and stability for oxygen reduction reaction. Sci Rep 3:1526. doi: 10.1038/srep01526 Google Scholar
  15. 15.
    Sharma DK, Ott A, Mullane APO, Bhargava SK (2011) The facile formation of silver dendritic structures in the absence of surfactants and their electrochemical and SERS properties. Colloids Surf A 386:98–106. doi: 10.1016/j.colsurfa.2011.07.001 CrossRefGoogle Scholar
  16. 16.
    Zhang S, Shao Y, Yin G, Lin Y (2013) Recent progress in nanostructured electrocatalysts for PEM fuel cells. J Mater Chem A 1:4631–4641. doi: 10.1039/c3ta01161e CrossRefGoogle Scholar
  17. 17.
    Lin T-H, Lin C-W, Liu H-H et al (2011) Potential-controlled electrodeposition of gold dendrites in the presence of cysteine. Chem Commun 47:2044–2046. doi: 10.1039/c0cc03273e CrossRefGoogle Scholar
  18. 18.
    Zhou R, Zhou W, Zhang H et al (2011) Facile template-free synthesis of pine needle-like Pd micro/nano-leaves and their associated electro-catalytic activities toward oxidation of formic acid. Nanoscale Res Lett 6:381–386. doi: 10.1186/1556-276X-6-381 CrossRefGoogle Scholar
  19. 19.
    Shim JH, Kim YS, Kang M et al (2012) Electrocatalytic activity of nanoporous Pd and Pt: effect of structural features. Phys Chem Chem Phys 14:3974–39799. doi: 10.1039/c2cp23429g CrossRefGoogle Scholar
  20. 20.
    Li G-R, Xu H, Lu X-F et al (2013) Electrochemical synthesis of nanostructured materials for electrochemical energy conversion and storage. Nanoscale 5:4056–4069. doi: 10.1039/c3nr00607g CrossRefGoogle Scholar
  21. 21.
    Xiong Y, Cai H, Wiley BJ et al (2007) Synthesis and mechanistic study of palladium nanobars and nanorods. J Am Chem Soc 129:3665–3675. doi: 10.1021/ja0688023 CrossRefGoogle Scholar
  22. 22.
    Kangasniemi KH, Condit DA, Jarvi TD (2004) Characterization of vulcan electrochemically oxidized under simulated PEM fuel cell conditions. J Electrochem Soc 151:E125–E132. doi: 10.1149/1.1649756 CrossRefGoogle Scholar
  23. 23.
    Lee K, Zhang J, Wang H, Wilkinson DP (2006) Progress in the synthesis of carbon nanotube- and nanofiber-supported Pt electrocatalysts for PEM fuel cell catalysis. J Appl Electrochem 36:507–522. doi: 10.1007/s10800-006-9120-4 CrossRefGoogle Scholar
  24. 24.
    Cheng TT, Gyenge EL (2009) Novel catalyst-support interaction for direct formic acid fuel cell anodes: Pd electrodeposition on surface-modified graphite felt. J Appl Electrochem 39:1925–1938. doi: 10.1007/s10800-009-9901-7 CrossRefGoogle Scholar
  25. 25.
    Martín AJ, Chaparro AM, Gallardo B et al (2009) Characterization and single cell testing of Pt/C electrodes prepared by electrodeposition. J Power Sources 192:14–20. doi: 10.1016/j.jpowsour.2008.10.104 CrossRefGoogle Scholar
  26. 26.
    Maniam KK, Chetty R (2013) Electrodeposited palladium nanoflowers for electrocatalytic applications. Fuel Cells 13:1196–1204. doi: 10.1002/fuce.201200162 CrossRefGoogle Scholar
  27. 27.
    Plyasova LM, Molina IY, Gavrilov AN et al (2006) Electrodeposited platinum revisited: tuning nanostructure via the deposition potential. Electrochim Acta 51:4477–4488. doi: 10.1016/j.electacta.2005.12.027 CrossRefGoogle Scholar
  28. 28.
    Song Y, Kim J, Park K (2009) Synthesis of Pd dendritic nanowires by electrochemical deposition. Cryst Growth Des 9:505–507CrossRefGoogle Scholar
  29. 29.
    Yu J, Fujita T, Inoue A et al (2010) Electrochemical synthesis of palladium nanostructures with controllable morphology. Nanotechnology 21:85601–85607. doi: 10.1088/0957-4484/21/8/085601 CrossRefGoogle Scholar
  30. 30.
    Zhang H, Zhou W, Du Y et al (2010) One-step electrodeposition of platinum nanoflowers and their high efficient catalytic activity for methanol electro-oxidation. Electrochem Commun 12:882–885. doi: 10.1016/j.elecom.2010.04.011 CrossRefGoogle Scholar
  31. 31.
    Zhang H, Jiang F, Zhou R et al (2011) Effect of deposition potential on the structure and electrocatalytic behavior of Pt micro/nanoparticles. Int J Hydrog Energy 36:15052–15059. doi: 10.1016/j.ijhydene.2011.08.072 CrossRefGoogle Scholar
  32. 32.
    Choi S, Jeong H, Choi K-H et al (2014) Electrodeposition of triangular Pd rod nanostructures and their electrocatalytic and SERS activities. ACS Appl Mater Interfaces 6:3002–3007. doi: 10.1021/am405601g CrossRefGoogle Scholar
  33. 33.
    Harrison JA, Hill RPJ, Thompson J (1973) kinetics of the electrodeposition of palladium. Electroanal Chem Interfacial Electrochem 47:431–440CrossRefGoogle Scholar
  34. 34.
    Soreta TR, Strutwolf J, Henry O, Sullivan CKO (2010) Electrochemical surface structuring with palladium nanoparticles for signal enhancement. Langmuir 26:12293–12299. doi: 10.1021/la101398g CrossRefGoogle Scholar
  35. 35.
    Jia F, Wong K, Zhang L (2009) Electrochemical synthesis of nanostructured palladium of different morphology directly on gold substrate through a cyclic deposition/dissolution route. J Phys Chem C 113:7200–7206. doi: 10.1021/jp900623t CrossRefGoogle Scholar
  36. 36.
    Kim B, Seo D, Lee JY et al (2010) Electrochemical deposition of Pd nanoparticles on indium-tin oxide electrodes and their catalytic properties for formic acid oxidation. Electrochem Commun 12:1442–1445. doi: 10.1016/j.elecom.2010.08.004 CrossRefGoogle Scholar
  37. 37.
    Lee I, Chan K-Y, Phillips DL (2004) 2 dimensional dendrites and 3 dimensional growth of electrodeposited platinum nanoparticles. Jpn J Appl Phys 43:767–770. doi: 10.1143/JJAP.43.767 CrossRefGoogle Scholar
  38. 38.
    Osorio A, Silveira I, Bueno V, Bergmann C (2008) H2SO4/HNO3/HCl—functionalization and its effect on dispersion of carbon nanotubes in aqueous media. Appl Surf Sci 255:2485–2489. doi: 10.1016/j.apsusc.2008.07.144 CrossRefGoogle Scholar
  39. 39.
    Jawhari T, Roid A, Casado J (1995) Raman spectroscopic characterisation of some commerically available carbon black materials. Carbon 33:1561–1565CrossRefGoogle Scholar
  40. 40.
    Avasarala B, Moore R, Haldar P (2010) Surface oxidation of carbon supports due to potential cycling under PEM fuel cell conditions. Electrochim Acta 55:4765–4771. doi: 10.1016/j.electacta.2010.03.056 CrossRefGoogle Scholar
  41. 41.
    Morales-lara F, Pe MJ, Altmajer-vaz D et al (2013) Functionalization of multiwall carbon nanotubes by ozone at basic pH. Comparison with oxygen plasma and ozone in gas phase. J Phys Chem C 117:11647–11655. doi: 10.1021/jp4017097 CrossRefGoogle Scholar
  42. 42.
    Hsieh Y, Chen J, Wu P (2011) Electrochemical degradation of nafion ionomer to functionalize carbon support for methanol electro-oxidation. J Power Sources 196:8225–8233. doi: 10.1016/j.jpowsour.2011.05.068 CrossRefGoogle Scholar
  43. 43.
    Huang H, Wang X (2012) Pd nanoparticles supported on low-defect graphene sheets: for use as high-performance electrocatalysts for formic acid and methanol oxidation. J Mater Chem 22:22533–22541. doi: 10.1039/c2jm33727d CrossRefGoogle Scholar
  44. 44.
    Alcaide F, Álvarez G, Cabot PL et al (2011) Testing of carbon supported Pd–Pt electrocatalysts for methanol electrooxidation in direct methanol fuel cells. Int J Hydrog Energy 36:4432–4439. doi: 10.1016/j.ijhydene.2011.01.015 CrossRefGoogle Scholar
  45. 45.
    Maniam KK, Muthukumar V, Chetty R (2014) Approaches towards improving the dispersion of electrodeposited palladium on carbon supports. Energy Procedia 54:281–291. doi: 10.1016/j.egypro.2014.07.271 CrossRefGoogle Scholar
  46. 46.
    Hosseini MG, Momeni MM, Khalilpur H (2012) Synthesis and characterisation of palladium nanoparticles immobilised on TiO2 nanotubes as a new high active electrode for methanol electro-oxidation. Int J Nanosci 11:1250016–1250024. doi: 10.1142/S0219581X12500160 CrossRefGoogle Scholar
  47. 47.
    Chai J, Li F, Bao Y, Liu S (2012) Electrochemical fabrication of multiplicate palladium hierarchical architectures and their electrocatalysis toward oxidation of formic acid. J Solid State Chem 16:1203–1210. doi: 10.1007/s10008-011-1473-x Google Scholar
  48. 48.
    Chetty R, Scott K (2007) Characterisation of thermally deposited platinum and palladium catalysts for direct formic acid fuel cells. J New Mater Electrochem Syst 10:135–142Google Scholar
  49. 49.
    Choi JH, Noh SY, Han SD et al (2008) Formic acid oxidation by carbon-supported palladium catalysts in direct formic acid fuel cell. Korean J Chem Eng 25:1026–1030CrossRefGoogle Scholar
  50. 50.
    Xia W, Wang Y, Bergstrasser R et al (2007) Surface characterization of oxygen-functionalized multi-walled carbon nanotubes by high-resolution X-ray photoelectron spectroscopy and temperature-programmed desorption. Appl Surf Sci 254:247–250. doi: 10.1016/j.apsusc.2007.07.120 CrossRefGoogle Scholar
  51. 51.
    Lakshminarayanan PV, Toghiani H, Pittman CU (2004) Nitric acid oxidation of vapor grown carbon nanofibers. Carbon 42:2433–2442. doi: 10.1016/j.carbon.2004.04.040 CrossRefGoogle Scholar
  52. 52.
    Jia F, Wong K, Du R (2009) Direct growth of highly catalytic palladium nanoplates array onto gold substrate by a template-free electrochemical route. Electrochem Commun 11:519–521. doi: 10.1016/j.elecom.2008.11.054 CrossRefGoogle Scholar
  53. 53.
    Du C, Chen M, Wang W et al (2010) Electrodeposited PdNi2 alloy with novelly enhanced catalytic activity for electrooxidation of formic acid. Electrochem Commun 12:843–846. doi: 10.1016/j.elecom.2010.03.046 CrossRefGoogle Scholar
  54. 54.
    Duarte MME, Taberner PM, Mayer CE (1988) Electrochemical behaviour of palladium/graphite and palladium/carbon systems. Electrochem Acta 34:499–504CrossRefGoogle Scholar
  55. 55.
    Berenguer R, Marco-Lozar JP, Quijada C et al (2009) Effect of electrochemical treatments on the surface chemistry of activated carbon. Carbon 47:1018–1027. doi: 10.1016/j.carbon.2008.12.022 CrossRefGoogle Scholar
  56. 56.
    Antolini E (2009) Carbon supports for low-temperature fuel cell catalysts. Appl Catal B Environ 88:1–24. doi: 10.1016/j.apcatb.2008.09.030 CrossRefGoogle Scholar
  57. 57.
    Ciacchi LC, Pompe W, De Vita A (2001) Initial nucleation of platinum clusters after reduction of K2PtCl4 in aqueous solution: a first principles study. J Am Chem Soc 123:7371–7380. doi: 10.1021/ja002977 CrossRefGoogle Scholar
  58. 58.
    Mertig M, Colombi CL, Seidel R et al (2002) DNA as a selective metallization template. Nano Lett 2:841–844. doi: 10.1021/nl025612r CrossRefGoogle Scholar
  59. 59.
    Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48:60–103. doi: 10.1002/anie.200802248 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Chemical EngineeringIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations