Skip to main content

Advertisement

Log in

Influence of the anolyte feed conditions on the performance of an alkaline glycerol electroreforming reactor

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This manuscript presents the results of an alkaline glycerol electroreforming reactor for the production of hydrogen mounted in an alkaline membrane fuel cell. Commercial PtRu/C and Pt/C were used as catalysts in the anode and cathode, respectively, with a KOH-doped polybenzimidazole (PBI) membrane. The influence of the fuel composition (a glycerol and KOH solution) and the flow rate were studied to assess the electrochemical performance, hydrogen yield, and efficiency compared to the values predicted by Faraday’s law. The best conditions for cell performance corresponded to 2 mol L−1 glycerol, 4 mol L−1 KOH, and a fuel flow rate of 1 mL min−1, which yielded a hydrogen production close to that dictated by Faraday’s law. Moreover, potassium glycerate and tartronate could be obtained as the main added-value products from the glycerol electrooxidation, with minor amounts of mesoxalate, oxalate, glycolate, and formate. In general, more oxidized products, especially potassium tartronate, are favored at low glycerol and high KOH concentrations. A preliminary analysis of the energy consumption indicated lower requirements compared to a KOH-doped PBI alkaline water electrolysis system, although the performance was limited by the low current densities (and concomitant hydrogen yield rate) that could be obtained. Finally, stoichiometric calculations demonstrate that the hydrogen obtained could be used for biodiesel hydrogenation to improve its properties while still maintaining a surplus of hydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bolat P, Thiel C (2014) Hydrogen supply chain architecture for bottom-up energy systems models. Part 1: developing pathways. Int J Hydrogen Energy 39(17):8881–8897

    Article  CAS  Google Scholar 

  2. Bolat P, Thiel C (2014) Hydrogen supply chain architecture for bottom-up energy systems models. Part 2: techno-economic inputs for hydrogen production pathways. Int J Hydrogen Energy 39(17):8898–8925

    Article  CAS  Google Scholar 

  3. Santos DMF, Sequeira CAC, Figueiredo JL (2013) Hydrogen production by alkaline water electrolysis. Quim Nova 36(8):1176–1193

    Article  CAS  Google Scholar 

  4. Kiliç EÖ, Koparal AS, Öğütveren ÜB (2009) Hydrogen production by electrochemical decomposition of formic acid via solid polymer electrolyte. Fuel Process Technol 90(1):158–163. doi:10.1016/j.fuproc.2008.08.011

    Article  Google Scholar 

  5. Lamy C, Devadas A, Simoes M, Coutanceau C (2012) Clean hydrogen generation through the electrocatalytic oxidation of formic acid in a proton exchange membrane electrolysis cell (PEMEC). Electrochim Acta 60:112–120. doi:10.1016/j.electacta.2011.11.006

    Article  CAS  Google Scholar 

  6. Take T, Tsurutani K, Umeda M (2007) Hydrogen production by methanol–water solution electrolysis. J Power Sources 164(1):9–16. doi:10.1016/j.jpowsour.2006.10.011

    Article  CAS  Google Scholar 

  7. Uhm S, Jeon H, Kim TJ, Lee J (2012) Clean hydrogen production from methanol–water solutions via power-saved electrolytic reforming process. J Power Sources 198:218–222. doi:10.1016/j.jpowsour.2011.09.083

    Article  CAS  Google Scholar 

  8. Pham AT, Baba T, Shudo T (2013) Efficient hydrogen production from aqueous methanol in a PEM electrolyzer with porous metal flow field: influence of change in grain diameter and material of porous metal flow field. Int J Hydrogen Energy 38(24):9945–9953

    Article  CAS  Google Scholar 

  9. Sethu SP, Gangadharan S, Chan SH, Stimming U (2014) Development of a novel cost effective methanol electrolyzer stack with Pt-catalyzed membrane. J Power Sources 254:161–167. doi:10.1016/j.jpowsour.2013.12.103

    Article  CAS  Google Scholar 

  10. Sasikumar G, Muthumeenal A, Pethaiah SS, Nachiappan N, Balaji R (2008) Aqueous methanol eletrolysis using proton conducting membrane for hydrogen production. Int J Hydrogen Energy 33(21):5905–5910. doi:10.1016/j.ijhydene.2008.07.013

    Article  CAS  Google Scholar 

  11. Caravaca A, Sapountzi FM, De Lucas-Consuegra A, Molina-Mora C, Dorado F, Valverde JL (2012) Electrochemical reforming of ethanol-water solutions for pure H 2 production in a PEM electrolysis cell. Int J Hydrogen Energy 37(12):9504–9513

    Article  CAS  Google Scholar 

  12. Caravaca A, De Lucas-Consuegra A, Calcerrada AB, Lobato J, Valverde JL, Dorado F (2013) From biomass to pure hydrogen: electrochemical reforming of bio-ethanol in a PEM electrolyser. Appl Catal B 134–135:302–309

    Article  Google Scholar 

  13. Lamy C, Jaubert T, Baranton S, Coutanceau C (2014) Clean hydrogen generation through the electrocatalytic oxidation of ethanol in a Proton Exchange Membrane Electrolysis Cell (PEMEC): effect of the nature and structure of the catalytic anode. J Power Sources 245:927–936. doi:10.1016/j.jpowsour.2013.07.028

    Article  CAS  Google Scholar 

  14. de Lucas-Consuegra A, Calcerrada AB, de la Osa AR, Valverde JL (2014) Electrochemical reforming of ethylene glycol. Influence of the operation parameters, simulation and its optimization. Fuel Process Technol 127:13–19. doi:10.1016/j.fuproc.2014.06.010

    Article  Google Scholar 

  15. Marshall AT, Haverkamp RG (2008) Production of hydrogen by the electrochemical reforming of glycerol–water solutions in a PEM electrolysis cell. Int J Hydrogen Energy 33(17):4649–4654. doi:10.1016/j.ijhydene.2008.05.029

    Article  CAS  Google Scholar 

  16. Kongjao S, Damronglerd S, Hunsom M (2011) Electrochemical reforming of an acidic aqueous glycerol solution on Pt electrodes. J Appl Electrochem 41(2):215–222. doi:10.1007/s10800-010-0226-3

    Article  CAS  Google Scholar 

  17. Guo WL, Li L, Li LL, Tian S, Liu SL, Wu YP (2011) Hydrogen production via electrolysis of aqueous formic acid solutions. Int J Hydrogen Energy 36(16):9415–9419. doi:10.1016/j.ijhydene.2011.04.127

    Article  CAS  Google Scholar 

  18. Tuomi S, Santasalo-Aarnio A, Kanninen P, Kallio T (2013) Hydrogen production by methanol–water solution electrolysis with an alkaline membrane cell. J Power Sources 229:32–35. doi:10.1016/j.jpowsour.2012.11.131

    Article  CAS  Google Scholar 

  19. Bambagioni V, Bevilacqua M, Bianchini C, Filippi J, Lavacchi A, Marchionni A, Vizza F, Shen PK (2010) Self-sustainable production of hydrogen, chemicals, and energy from renewable alcohols by electrocatalysis. ChemSusChem 3(7):851–855. doi:10.1002/cssc.201000103

    Article  CAS  Google Scholar 

  20. De Paula J, Nascimento D, Linares JJ. Electrochemical reforming of glycerol in alkaline PBI-based PEM reactor for hydrogen production. In: Chemical Engineering Transactions, 2014. pp 205-210

  21. Wagner RC, Regan JM, Oh S-E, Zuo Y, Logan BE (2009) Hydrogen and methane production from swine wastewater using microbial electrolysis cells. Water Res 43(5):1480–1488. doi:10.1016/j.watres.2008.12.037

    Article  CAS  Google Scholar 

  22. Selembo PA, Perez JM, Lloyd WA, Logan BE (2009) High hydrogen production from glycerol or glucose by electrohydrogenesis using microbial electrolysis cells. Int J Hydrogen Energy 34(13):5373–5381. doi:10.1016/j.ijhydene.2009.05.002

    Article  CAS  Google Scholar 

  23. Lu L, Ren N, Xing D, Logan BE (2009) Hydrogen production with effluent from an ethanol–H2-coproducing fermentation reactor using a single-chamber microbial electrolysis cell. Biosens Bioelectron 24(10):3055–3060. doi:10.1016/j.bios.2009.03.024

    Article  CAS  Google Scholar 

  24. Chen YX, Lavacchi A, Miller HA, Bevilacqua M, Filippi J, Innocenti M, Marchionni A, Oberhauser W, Wang L, Vizza F (2014) Nanotechnology makes biomass electrolysis more energy efficient than water electrolysis. Nat Commun. doi:10.1038/ncomms5036

    Google Scholar 

  25. Sethu SP, Gangadharan S, Chan SH, Stimming U (2014) Development of a novel cost effective methanol electrolyzer stack with Pt-catalyzed membrane. J Power Sources 254:161–167

    Article  CAS  Google Scholar 

  26. Dou B, Song Y, Wang C, Chen H, Xu Y (2014) Hydrogen production from catalytic steam reforming of biodiesel byproduct glycerol: issues and challenges. Renew Sustain Energy Rev 30:950–960. doi:10.1016/j.rser.2013.11.029

    Article  CAS  Google Scholar 

  27. Mohanty P, Pant KK, Mittal R (2014) Hydrogen generation from biomass materials: challenges and opportunities. Wiley Interdiscip Rev. doi:10.1002/wene.111

    Google Scholar 

  28. Vaidya PD, Rodrigues AE (2009) Glycerol Reforming for Hydrogen Production: a Review. Chem Eng Technol 32(10):1463–1469. doi:10.1002/ceat.200900120

    Article  CAS  Google Scholar 

  29. Holade Y, Morais C, Servat K, Napporn TW, Kokoh KB (2013) Toward the electrochemical valorization of glycerol: fourier transform infrared spectroscopic and chromatographic studies. ACS Catal 3(10):2403–2411

    Article  CAS  Google Scholar 

  30. Oliveira VL, Morais C, Servat K, Napporn TW, Tremiliosi-Filho G, Kokoh KB (2013) Glycerol oxidation on nickel based nanocatalysts in alkaline medium—Identification of the reaction products. J Electroanal Chem 703:56–62

    Article  CAS  Google Scholar 

  31. Oliveira VL, Morais C, Servat K, Napporn TW, Tremiliosi-Filho G, Kokoh KB (2014) Studies of the reaction products resulted from glycerol electrooxidation on Ni-based materials in alkaline medium. Electrochim Acta 117:255–262

    Article  CAS  Google Scholar 

  32. Martins CA, Giz MJ, Camara GA (2011) Generation of carbon dioxide from glycerol: evidences of massive production on polycrystalline platinum. Electrochim Acta 56(12):4549–4553

    Article  CAS  Google Scholar 

  33. Ferreira RS Jr, Janete Giz M, Camara GA (2013) Influence of the local pH on the electrooxidation of glycerol on Palladium-Rhodium electrodeposits. J Electroanal Chem 697:15–20

    Article  CAS  Google Scholar 

  34. Fernández PS, Martins ME, Camara GA (2012) New insights about the electro-oxidation of glycerol on platinum nanoparticles supported on multi-walled carbon nanotubes. Electrochim Acta 66:180–187

    Article  Google Scholar 

  35. Fernández PS, Martins CA, Martins ME, Camara GA (2013) Electrooxidation of glycerol on platinum nanoparticles: deciphering how the position of each carbon affects the oxidation pathways. Electrochim Acta 112:686–691

    Article  Google Scholar 

  36. Bott-Neto JL, Garcia AC, Oliveira VL, De Souza NE, Tremiliosi-Filho G (2014) Au/C catalysts prepared by a green method towards C3 alcohol electrooxidation: a cyclic voltammetry and in situ FTIR spectroscopy study. J Electroanal Chem 735:57–62

    Article  CAS  Google Scholar 

  37. Gomes JF, Garcia AC, Gasparotto LHS, De Souza NE, Ferreira EB, Pires C, Tremiliosi-Filho G (2014) Influence of silver on the glycerol electro-oxidation over AuAg/C catalysts in alkaline medium: a cyclic voltammetry and in situ FTIR spectroscopy study. Electrochim Acta 144:361–368

    Article  CAS  Google Scholar 

  38. Qi J, Xin L, Zhang Z, Sun K, He H, Wang F, Chadderdon D, Qiu Y, Liang C, Li W (2013) Surface dealloyed PtCo nanoparticles supported on carbon nanotube: facile synthesis and promising application for anion exchange membrane direct crude glycerol fuel cell. Green Chem 15(5):1133–1137

    Article  CAS  Google Scholar 

  39. Kwon Y, Koper MTM (2010) Combining voltammetry with HPLC: application to electro-oxidation of glycerol. Anal Chem 82(13):5420–5424

    Article  CAS  Google Scholar 

  40. Kwon Y, Birdja Y, Spanos I, Rodriguez P, Koper MTM (2012) Highly selective electro-oxidation of glycerol to dihydroxyacetone on platinum in the presence of bismuth. ACS Catal 2(5):759–764

    Article  CAS  Google Scholar 

  41. Zhang Z, Xin L, Li W (2012) Electrocatalytic oxidation of glycerol on Pt/C in anion-exchange membrane fuel cell: cogeneration of electricity and valuable chemicals. Appl Catal B 119–120:40–48

    Article  Google Scholar 

  42. Chorbadzhiyska E, Mitov M, Hristov G, Dimcheva N, Nalbandian L, Evdou A, Hubenova Y (2014) Pd-Au Electrocatalysts for Hydrogen Evolution Reaction at Neutral pH. Int J Electrochem 2014:6. doi:10.1155/2014/239270

    Article  Google Scholar 

  43. Linares JJ, Nunes Couto, R. (2014) KOH-doped polybenzimidazole for alkaline direct glycerol fuel cells. Submitted to the Journal of Membrane Science

  44. Gomes JF, Martins CA, Giz MJ, Tremiliosi-Filho G, Camara GA (2013) Insights into the adsorption and electro-oxidation of glycerol: self-inhibition and concentration effects. J Catal 301:154–161

    Article  CAS  Google Scholar 

  45. Nascimento AP, Linares JJ (2014) Performance of a direct glycerol fuel cell using KOH doped polybenzimidazole as electrolyte. J Braz Chem Soc 25(3):509–516

    CAS  Google Scholar 

  46. Zhang Z, Xin L, Wang Z, Li W Cogeneration of electricity and valuable chemicals: Electrocatalytic oxidation of glycerol in anion-exchange membrane fuel cell. In: AIChE 2012–2012 AIChE Annual Meeting, Conference Proceedings, 2012

  47. Gomes J, Tremiliosi-Filho G (2011) Spectroscopic Studies of the glycerol electro-oxidation on polycrystalline Au and Pt surfaces in acidic and alkaline media. Electrocatal 2(2):96–105. doi:10.1007/s12678-011-0039-0

    Article  CAS  Google Scholar 

  48. Martin H (2002) Prospects of the Direct Methanol Fuel Cell. Fuel Cell technology handbook., Handbook Series for Mechanical Engineering. CRC Press, Boca raton. doi:10.1201/9781420041552.ch7

    Google Scholar 

  49. Ilie A, Simoes M, Baranton S, Coutanceau C, Martemianov S (2011) Influence of operational parameters and of catalytic materials on electrical performance of direct glycerol solid alkaline membrane fuel cells. J Power Sources 196(11):4965–4971. doi:10.1016/j.jpowsour.2011.02.003

    Article  CAS  Google Scholar 

  50. Aili D, Hansen MK, Renzaho RF, Li Q, Christensen E, Jensen JO, Bjerrum NJ (2013) Heterogeneous anion conducting membranes based on linear and crosslinked KOH doped polybenzimidazole for alkaline water electrolysis. J Membr Sci 447:424–432. doi:10.1016/j.memsci.2013.07.054

    Article  CAS  Google Scholar 

  51. Souza BS, Pinho DMM, Leopoldino EC, Suarez PAZ, Nome F (2012) Selective partial biodiesel hydrogenation using highly active supported palladium nanoparticles in imidazolium-based ionic liquid. Appl Catal A 433–434:109–114. doi:10.1016/j.apcata.2012.05.006

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Universal Call Project No. 474381/2013-7) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, AEX Process No. 6278-14-0) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José J. Linares.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Paula, J., Nascimento, D. & Linares, J.J. Influence of the anolyte feed conditions on the performance of an alkaline glycerol electroreforming reactor. J Appl Electrochem 45, 689–700 (2015). https://doi.org/10.1007/s10800-015-0848-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-015-0848-6

Keywords

Navigation