Skip to main content
Log in

Effect of different reduction methods on electrochemical cycling stability of reduced graphene oxide in supercapacitors

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical cycling stability is one of the most important parameters for the practical application of supercapacitors and highly depends on the electrode material. Herein, we report the cycling stability of reduced graphene oxide with different morphologies such as curly and flat graphene nanosheets prepared by the chemical and thermal reduction of graphene oxide, respectively. The “curly” graphene nanosheets displayed moderate capacitance, good cycling stability, and satisfactory rate performance up to 2,500 cycles. In contrast, the “flat” graphene nanosheets displayed a very high initial capacitance, but poor cycling stability and rate performance. The pore structure of the “curly” graphene nanosheets was found to be more stable than that of the “flat” graphene nanosheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Futaba DN, Hata K, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y, Tanaike O, Hatori H, Yumura M, Iijima S (2006) Nature Mater 5:987

    Article  CAS  Google Scholar 

  2. Zhang LL, Zhao X (2009) Chem Soc Rev 38:2520

    Article  CAS  Google Scholar 

  3. Miller JR, Simon P (2008) Science 321:651

    Article  CAS  Google Scholar 

  4. El-Kady MF, Strong V, Dubin S, Kaner RB (2012) Science 335:1326

    Article  CAS  Google Scholar 

  5. Wang G, Zhang L, Zhang J (2012) Chem Soc Rev 41:797

    Article  CAS  Google Scholar 

  6. Lota G, Fic K, Frackowiak E (2011) Energy Environ Sci 4:1592

    Article  CAS  Google Scholar 

  7. An KH, Kim WS, Park YS, Moon JM, Bae DJ, Lim SC, Lee YS, Lee YH (2001) Adv Funct Mater 11:387

    Article  CAS  Google Scholar 

  8. Zhang LL, Zhou R, Zhao XS (2010) J Mater Chem 20:5983

    Article  CAS  Google Scholar 

  9. Frackowiak E (2007) PCCP 9:1774

    Article  CAS  Google Scholar 

  10. Vivekchand S, Rout CS, Subrahmanyam K, Govindaraj A, Rao C (2008) J Chem Sci 120:9

    Article  CAS  Google Scholar 

  11. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Nano Lett 8:3498

    Article  CAS  Google Scholar 

  12. Li Y, Li X-M (2013) RSC Adv 3:2398

    Article  CAS  Google Scholar 

  13. Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D, Stach EA, Ruoff RS (2011) Science 332:1537

    Article  CAS  Google Scholar 

  14. Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M, Chen Y (2009) J Phys Chem C 113:13103

    Article  CAS  Google Scholar 

  15. Li Y, van Zijll M, Chiang S, Pan N (2011) J Power Sources 196:6003

    Article  CAS  Google Scholar 

  16. Zhang L, Shi G (2011) J Phys Chem C 115:17206

    Article  CAS  Google Scholar 

  17. Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J (2008) Nano Lett 9:30

    Article  Google Scholar 

  18. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666

    Article  CAS  Google Scholar 

  19. Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, de Heer WA (2006) Science 312:1191

    Article  CAS  Google Scholar 

  20. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn J-H, Kim P, Choi J-Y, Hong BH (2009) Nature 457:706

    Article  CAS  Google Scholar 

  21. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Carbon 45:1558

    Article  CAS  Google Scholar 

  22. Pei S, Cheng H-M (2012) Carbon 50:3210

    Article  CAS  Google Scholar 

  23. Buglione L, Chng ELK, Ambrosi A, Sofer Z, Pumera M (2012) Electrochem Commun 14:5

    Article  CAS  Google Scholar 

  24. Liu C, Yu Z, Neff D, Zhamu A, Jang BZ (2010) Nano Lett 10:4863

    Article  CAS  Google Scholar 

  25. Zhao B, Liu P, Jiang Y, Pan D, Tao H, Song J, Fang T, Xu W (2012) J Power Sources 198:423

    Article  CAS  Google Scholar 

  26. Schniepp HC, Li J-L, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud’homme RK, Car R, Saville DA, Aksay IA (2006) J Phys Chem B 110:8535

    Article  CAS  Google Scholar 

  27. Du Q, Zheng M, Zhang L, Wang Y, Chen J, Xue L, Dai W, Ji G, Cao J (2010) Electrochim Acta 55:3897

    Article  CAS  Google Scholar 

  28. Lv W, Tang D-M, He Y-B, You C-H, Shi Z-Q, Chen X-C, Chen C-M, Hou P-X, Liu C, Yang Q-H (2009) ACS Nano 3:3730

    Article  CAS  Google Scholar 

  29. Jeon I-Y, Shin Y-R, Sohn G-J, Choi H-J, Bae S-Y, Mahmood J, Jung S-M, Seo J-M, Kim M-J, Wook Chang D, Dai L, Baek J-B (2012) PNAS 109:5588

    Article  CAS  Google Scholar 

  30. Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  31. Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD (1999) Chem Mater 11:771

    Article  CAS  Google Scholar 

  32. Malard L, Pimenta M, Dresselhaus G, Dresselhaus M (2009) Phys Rep 473:51–87

    Article  CAS  Google Scholar 

  33. Kudin KN, Ozbas B, Schniepp HC, Prud’Homme RK, Aksay IA, Car R (2008) Nano Lett 8:36–41

    Article  CAS  Google Scholar 

  34. Li Y, Lv X, Lu J, Li J (2010) J Phys Chem C 114:21770–21774

    Article  CAS  Google Scholar 

  35. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Phys Rev Lett 97:187401

    Article  CAS  Google Scholar 

  36. Wu Z-S, Sun Y, Tan Y-Z, Yang S, Feng X, Müllen K (2012) JACS 134:19532

    Article  CAS  Google Scholar 

  37. Hastak RS, Sivaraman P, Potphode DD, Shashidhara K, Samui AB (2012) Electrochim Acta 59:296–303

    Article  CAS  Google Scholar 

  38. Barrett EP, Joyner LG, Halenda PP (1951) JACS 73:373

    Article  CAS  Google Scholar 

  39. McAllister MJ, Li J-L, Adamson DH, Schniepp HC, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Prud’homme RK, Aksay IA (2007) Chem Mater 19:4396

    Article  CAS  Google Scholar 

  40. Liu H-J, Cui W-J, Jin L-H, Wang C-X, Xia Y-Y (2009) J Mater Chem 19:3661

    Article  CAS  Google Scholar 

  41. Garcia BB, Candelaria SL, Cao G (2012) J Mater Sci 47:5996

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from NSFC (Project No. 51202212, 21176119) and Natural Science Foundation of Hebei Province (Project No. E2014203033).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yueming Li or Xue-Mei Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Yu, S., Zhao, D. et al. Effect of different reduction methods on electrochemical cycling stability of reduced graphene oxide in supercapacitors. J Appl Electrochem 45, 57–65 (2015). https://doi.org/10.1007/s10800-014-0771-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-014-0771-2

Keywords

Navigation