Skip to main content

Advertisement

Log in

Synthesis of highly crystalline polyaniline with the use of (Cyclohexylamino)-1-propanesulfonic acid for supercapacitor

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Polyaniline (PANI) salt was prepared with 3-(Cyclohexylamino)-1-propanesulfonic acid (CAPS) as a novel dopant by aqueous polymerization pathway. Effects of sodium lauryl sulfate surfactant, mineral acid (H2SO4), and a combination of surfactant with mineral acid during the polymerization reaction were also determined. PANI-CAPS showed semicrystalline with flake-like morphology. The use of the sodium lauryl sulfate along with CAPS resulted in the formation of highly crystalline nanospheres with flake-like morphology. In order to find out the effect of surfactant, sodium lauryl sulfate was used in the reaction. The combination of sodium lauryl sulfate, CAPS, and H2SO4 brings about an extended nanosphere morphology. These polyaniline salts were used as electrode materials in the supercapacitor application, in a symmetric two-electrode cell configuration. The values of specific capacitance, energy, and power densities of PANI-CAPS-DHS-H2SO4 material at 2 mA cm−2 were 495 F g−1, 90 kJ kg−1, and 120 J Kg−1 s−1, respectively. Moreover, 85 % of the original capacitance was retained after 3,000 galvanostatic charge–discharge cycles with a coulombic efficiency of 96–99 %. The value of phase angle is close to 90 at low frequencies, indicating a good capacitive behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854. doi:10.1038/nmat2297

    Article  CAS  Google Scholar 

  2. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer-Plenum, New York

    Book  Google Scholar 

  3. Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Science 321:651–652. doi:10.1126/science.1158736

    Article  CAS  Google Scholar 

  4. Zheng JP, Cygan PJ, Jow TR (1995) Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. J Electrochem Soc 142:2699–2703. doi:10.1149/1.2050077

    Article  CAS  Google Scholar 

  5. Frackowiak E, Be´guin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39:937–950. doi:10.1016/S0008-6223(00)00183-4

    Article  CAS  Google Scholar 

  6. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2521. doi:10.1039/B813846J

    Article  CAS  Google Scholar 

  7. Lokhande CD, Dubal DP, Joo OS (2011) Metal oxide thin film based supercapacitors. Curr Appl Phys 11:255–270. doi:10.1016/j.cap.2010.12.001

    Article  Google Scholar 

  8. Deng W, Ji X, Chen Q, Banks CE (2011) Electrochemical capacitors utilising transition metal oxides: an update of recent developments. RSC Adv 1:1171–1178. doi:10.1039/C1RA00664A

    Article  CAS  Google Scholar 

  9. Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196:1–12. doi:10.1016/j.jpowsour.2010.06.084

    Article  CAS  Google Scholar 

  10. Bhadra S, Khastgir D, Singha NK, Lee JH (2009) Progress in preparation, processing and applications of Polyaniline. Prog Polym Sci 34:783–810. doi:10.1016/j.progpolymsci.2009.04.003

    Article  CAS  Google Scholar 

  11. Sydulu S, Palaniappan S (2013) Recent advances in the approach of polyaniline as electrode for supercapacitor. Nova, New York

    Google Scholar 

  12. Chiolerio A, Bocchini S, Porro S (2014) Inkjet printed negative supercapacitors: Synthesis of -polyaniline-based inks, doping agent effect, and advanced electronic devices applications. Adv Funct Mater 24:3375–3383. doi:10.1002/adfm.201303371

    Article  CAS  Google Scholar 

  13. Bocchini S, Chiolerio A, Porro S, Accardo D, Garino N, Bejtka K, Perrone D, Pirri CF (2013) Synthesis of polyaniline-based inks, doping thereof and test device printing towards electronic applications. J Mater Chem C 1:5101–5109. doi:10.1039/c3tc30764f

    Article  CAS  Google Scholar 

  14. Rajender B, Palaniappan S (2014) Emeraldine base form of polyaniline nanofibers as new, economical, green and efficient catalyst for synthesis of Z-aldoximes. J Catalysts 2014:1–6. doi:10.1155/2014/515428

    Google Scholar 

  15. Gupta B, Prakash R (2009) Synthesis of processible doped polyaniline-polyacrylic acid composites. J Appl Polym Sci 114:874–882. doi:10.1002/app.3055410.1155/2014/515428

    Article  CAS  Google Scholar 

  16. Jinish Antony M, Jayakannan M (2010) Molecular template approach for evolution of conducting polymer nanostructures: Tracing the role of morphology on conductivity and solid state ordering. J Phys Chem B 114:1314–1324. doi:10.1021/jp910636s

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Department of Science and Technology, New Delhi, India for funding under the project DST/TSG/PT/2011/179-G. The authors thank Dr. Lakshmi Kantam, Director, CSIR-IICT for her support and encouragement. The authors also thank Dr. Vijayamohanan K. Pillai, Director, CSIR—CECRI, Karaikudi for his valuable suggestion. Authors BR and BR are thankful to UGC, India for providing research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Palaniappan Srinivasan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolagam, R., Boddula, R. & Srinivasan, P. Synthesis of highly crystalline polyaniline with the use of (Cyclohexylamino)-1-propanesulfonic acid for supercapacitor. J Appl Electrochem 45, 51–56 (2015). https://doi.org/10.1007/s10800-014-0753-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-014-0753-4

Keywords

Navigation