Skip to main content
Log in

A glassy carbon electrode modified by a copolymer of Co-tetrakis (para-aminophenyl)porphyrin and ortho-phenylenediamine. Characterization and electrocatalytic sulfite oxidation behavior of a basic extract from red wine

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, we present a comparison among three glassy carbon electrodes modified by Co-porphyrin, ortho-phenylenediamine, or both simultaneously. This comparison shows the differences among the electrochemical behavior, morphological characteristics and electrocatalytic behavior toward the sulfite oxidation of these electrodes. The electrode modified by Co-porphyrin, ortho-phenylenediamine and copolymer has been investigated in detail for the comparision of electrocatalytic activity towards the sulfite oxidation. In the case of the glassy carbon-modified electrodes, the presence of the copolymer enhances the electrocatalytic performance of the modified electrodes in spite of the non-catalytic response (compared to the bare glassy carbon) of both homopolymer-modified electrodes toward the oxidation of sulfite. Additionally, the oxidation of sulfite extracted from red wine is shown. The copolymer-modified electrode is capable of oxidizing the extracted free sulfite in a 0.02 M NaOH solution. Through the addition of standards method, a concentration of free sulfite in a Chilean red wine sample was determined to be 44 ppm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Dai H-P, Wu Q-H, Sun S-G, Shiu K-K (1998) Electrochemical quartz crystal microbalance studies on the electropolymerization processes of ortho-phenylenediamine in sulfuric acid solutions. J Electroanal Chem 456(1–2):47

    Article  CAS  Google Scholar 

  2. Ogura K, Kokura M, Yano J, Shiigi H (1995) Spectroscopic and scanning tunneling microscopic characterization of virgin and recast films of electrochemically prepared poly(o-phenylenediamine). Electrochim Acta 40(17):2707

    Article  CAS  Google Scholar 

  3. Wu LL, Luo J, Lin ZH (1996) Spectroelectrochemical studies of poly-o-phenylenediamine. Part 1. In situ resonance Raman spectroscopy. J Electroanal Chem 417(1–2):53

    Article  CAS  Google Scholar 

  4. Maiyalagan T (2008) Electrochemical synthesis, characterization and electro-oxidation of methanol on platinum nanoparticles supported poly(o-phenylenediamine) nanotubes. J Power Sources 179(2):443

    Article  CAS  Google Scholar 

  5. Martinusz K, Láng G, Inzelt G (1997) Impedance analysis of poly(o-phenylenediamine) electrodes. J Electroanal Chem 433(1):1–8

    Article  CAS  Google Scholar 

  6. Martinusz K, Czirok E, Inzelt G (1994) Studies of the formation and redox transformation of poly(o-phenylenediamine) films using a quartz crystal microbalance. J Electroanal Chem 379(1–2):437

    Article  Google Scholar 

  7. White BA, Murray RW (1985) Electroactive porphyrin films from electropolymerized metallotetra (o-aminophenyl) porphyrins. J Electroanal Chem 189:345

    Article  CAS  Google Scholar 

  8. Peljo P, Rauhala T, Murtomäki L, Kallio T, Kontturi K (2011) Oxygen reduction at a water-1,2-dichlorobenzene interface catalyzed by cobalt tetraphenyl porphyrine––a fuel cell approach. Int J Hydrog Energy 36(16):10033

    Article  CAS  Google Scholar 

  9. Riquelme MA, Isaacs M, Lucero M, Trollund E, Aguirre MJ, Canales J (2003) Electrocatalytic reduction of carbon dioxide at polymeric Cobalt tetra (3-Aminophenyl) porphyrin glassy carbon-modified electrodes. J Chil Chem Soc 48(2):2

    Article  Google Scholar 

  10. Armijo F, Isaacs M, Ramírez G, Trollund E, Canales MJ, Aguirre MJ (2004) Electrocatalytic reduction of nitrate and electrical characterization of modified electrodes with polytetraminophenylporphyrins-modified electrodes. J Electroanal Chem 566(2):315

    Article  CAS  Google Scholar 

  11. Trollund E, Ardiles P, Aguirre MJ, Biaggio SR, Rocha-Filho RC (2000) Spectroelectrochemical and electrical characterization of poly(cobal-tetraminophthalocyanine) modified electrodes: electrocatalytic oxidation of hydrazine. Polyhedron 19:2303–2312

    Article  CAS  Google Scholar 

  12. Isaacs M, Canales JC, Riquelme A, Lucero M, Aguirre MJ, Costamagna J (2003) Contribution of the ligand on the electroreduction of CO2 catalized by a cobalt(II) macrocyclic complex. J Coord Chem 56(14):1193

    Article  CAS  Google Scholar 

  13. Ramírez G, Lucero M, Riquelme A, Villagrán M, Costamagna J, Trollund E, Aguirre MJ (2004) A supramolecular Cobalt-porphyrin-modified electrode toward the electroreduction of CO2. J Coord Chem 57:249

    Article  Google Scholar 

  14. Griveau S, Albin V, Pauporté T, Bedioui F, Zagal J (2002) Comparative study of electropolymerized cobalt porphyrin and phthalocyanine based films for the electrochemical activation of thiols. J Mater Chem 12(2):225–232

    Article  CAS  Google Scholar 

  15. Lucero M, Riquelme M, Ramírez G, Goya MC, González Orive A, Hernández Creus A, Arévalo MC, Aguirre MJ (2012) A new modified electrode with a copolymer of aniline/Fe(III)-Tetrakis(Para-Aminophenyl)porphyrin: test of its electrocatalytic activity toward the reduction of molecular oxygen and oxidation of ascorbic acid and sulfite ion. Int J Electrochem Sci 7:234–250

    CAS  Google Scholar 

  16. Chen WC, Wen TC, Gopalan A (2001) Electrochemical and spectroelectrochemical evidences for copolymer formation between 2-aminodiphenylamine and aniline. J Electrochem Soc 148(11):E427–E434

    Article  CAS  Google Scholar 

  17. Yamamoto K, Tanaichi D (2000) A self-doped oligoaniline with two stable redox couples in a wide pH range. Macromol Chem Phys 201(1):649

    Article  Google Scholar 

  18. Heras JY, Giacobone AFF, Battaglini F (2007) Ascorbate amperometric determination using conducting copolymers from aniline and N-(3-propane sulfonic acid)aniline. Talanta 71(4):1684–1689

    Article  CAS  Google Scholar 

  19. Latonen RM, Kvarnstöm C, Ivaska A (1999) Electrochemical synthesis of a copolymer of poly(3-octylthiophene) and poly(paraphenylene). Electrochim Acta 44(12):1933–1943

    Article  CAS  Google Scholar 

  20. Chen-Yang YW, Li JL, Wu TL, Wang WS, Hon TF (2004) Electropolymerization and electrochemical properties of (N-hydroxyalkyl)pyrrole/pyrrole copolymers. Electrochim Acta 49(12):2031–2040

    Article  CAS  Google Scholar 

  21. Tang H, Kitani A, Ito S (1997) Electrochemical copolymerization of aniline and aniline-2,5-disulfonic acid. Electrochim Acta 42(23–24):3421–3428

    Article  CAS  Google Scholar 

  22. Bilal S, Holze R (2007) In situ UV–vis spectroelectrochemistry of poly(o-phenylenediamine-co-m-toluidine). Electrochim Acta 52:5346–5356

    Article  CAS  Google Scholar 

  23. Arce R, del Río R, Ruíz-León D, Vélez J, Isaacs M, del Valle MA, Aguirre MJ (2012) Evidence for the formation of a copolymer by simultaneous electropolymerization of p-tetraaminophenyl porphyrin Cobalt(II) and o-phenylenediamine on glassy carbon. Int J Electrochem Sci 7:11596–11608

    CAS  Google Scholar 

  24. Losito I, De Giglio E, Cioffi N, Malitesta C (2001) Spectroscopic investigation on polymer films obtained by oxidation of o-phenylenediamine on platinum electrodes at different pHs. J Mater Chem 11:1812–1817

    Article  CAS  Google Scholar 

  25. Zhou H, Yang W, Sun C (2004) Amperometric sulfite sensor based on multiwalled carbon nanotubes/ferrocene-branched chitosan composites. Talanta 77(1):366–371

    Article  Google Scholar 

  26. Tolmachev Y, Scherson D (2004) The electrochemical oxidation of sulfite on gold: uV-Vis reflectance spectroscopy at a rotating disk electrode. Electrochim Acta 49(8):1315–1319

    Article  CAS  Google Scholar 

  27. Carballo R, Campo Dall’ Orto V, Lo Balbo A, Rezzano I (2003) Determination of sulfite by flow injection analysis using a poly[Ni-(protoporphyrin IX)] chemically modified electrode. Sens Actuat B 88(2):155–161

    Article  CAS  Google Scholar 

  28. David R (2000) Hanbook of chemistry and physics, 73a edn. CRC Press, Inc., Florida

    Google Scholar 

  29. Arce R, Tesis de Doctorado, Copolímeros de para-tetraaminofenilporfirina de cobalto(II) y orto-fenilendiamina como recubrimientos de electrodos: propiedades electrocatalíticas versus condiciones de electrosíntesis (2012) Universidad de Santiago de Chile, Chile

  30. Lucero M, Ramírez G, Riquelme A, Azócar I, Isaacs M, Armiijo F, Forster JE, Trollund E, Aguirre MJ, Lexa D (2004) Electrocatalytic oxidation of sulfite at polymeric iron tetra (4-aminophenyl) porphyrin—modified electrode. J Mol Catal A: Chem 221(1–2):71

    Article  CAS  Google Scholar 

  31. Arce R, Márquez P, Herrera F, Aguirre MJ, Romero J (2013) Sulfite oxidation mediated by ortho-phenylenediamine/Co(II)-tetrakis(para-aminophenyl)porphyrin copolymers in acid medium. J Chil Chem Soc 58(4):1982–1985

    Article  CAS  Google Scholar 

  32. Karaman R, Jeon S, Almarson O, Bruice TC (1992) Symmetrical and unsymmetrical quadruply aza bridged closely interspaced cofacial bis-5,10,15,20-tetraphenylporphyrins 3. Intraplanar distance, 1H NMR chemical shifts and the catalysis of the electrochemical reduction of oxygen. J Am Chem Soc 114:4899

    Article  CAS  Google Scholar 

  33. A. Plaza, J. Romero, W. Silva, E. Morales, A. Torres, and M. J. Aguirre, (2013) New metodology for extraction and quantification of the sulfite content from wine by means of a membrane contactor operation. Food Sci and Technol Int. In Press

  34. Hasanoğlu A, Romero J, Plaza A, Silva W (2013) Gas-filled membrane absorption processes: a review of three different applications to describe the mass transfer by means of a unified approach. Desalination 51:5649–5663. doi:10.1080/19443994.2013.769603

    Article  Google Scholar 

  35. http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?an=21:2.0.1.1.2.71.4.1 (access in June 2014)

  36. Montes C, Vélez JH, Ramírez G, Isaacs M, Arce R, Aguirre MJ (2012) Critical comparison between modified Monier-Williams and electrochemical methods to determine sulfite in aqueous solutions. Sci World J. doi:10.1100/2012/168148

    Google Scholar 

Download references

Acknowledgments

Financial support from Fondecyt-Postdoctoral 3130594 and 1120071 Fondecyt-Regular projects. This study has been supported by Project ICM-P10-003-F, CILIS, granted by Fondo de Innovación para la Competitividad, del Ministerio de Economía, Fomento y Turismo, Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roxana Arce.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arce, R., Romero, J. & Aguirre, M.J. A glassy carbon electrode modified by a copolymer of Co-tetrakis (para-aminophenyl)porphyrin and ortho-phenylenediamine. Characterization and electrocatalytic sulfite oxidation behavior of a basic extract from red wine. J Appl Electrochem 44, 1361–1369 (2014). https://doi.org/10.1007/s10800-014-0750-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-014-0750-7

Keywords

Navigation