Electrochemical reduction of CO2 to formate at high current density using gas diffusion electrodes

Abstract

The electrochemical reduction of carbon dioxide into formate was studied using gas diffusion electrodes (GDE) with Sn as electrocatalyst in order to overcome mass transport limitations and to achieve high current densities. For this purpose, a dry pressing method was developed for GDE preparation and optimized with respect to mechanical stability and the performance in the reduction of CO2. Using this approach, GDEs can be obtained with a high reproducibility in a very simple, fast, and straightforward manner. The influence of the metal loading on current density and product distribution was investigated. Furthermore, the effect of changing the electrolyte pH was evaluated. Under optimized conditions, the GDE allowed current densities up to 200 mA cm−2 to be achieved with a Faradaic efficiency of around 90 % toward formate and a substantial suppression of hydrogen production (<3 %) at ambient pressure. At higher current densities mass transport issues come into effect and hydrogen is increasingly produced. The corresponding cathode potential was found to be 1.57 V vs. SHE.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Aresta M, Dibenedetto A (2007) Utilisation of CO2 as a chemical feedstock: opportunities and challenges. Dalton Trans 28:2975–2992. doi:10.1039/b700658f

    Article  Google Scholar 

  2. 2.

    Hu B, Guild C, Suib SL (2013) Thermal, electrochemical, and photochemical conversion of CO2 to fuels and value-added products. J CO2 Util 1:18–27. doi:10.1016/j.jcou.2013.03.004

    CAS  Article  Google Scholar 

  3. 3.

    Ausfelder F, Bazzanella A (2008) Dechema Diskussionspapier: Verwertung und Speicherung von CO2. Dechema e.V.

  4. 4.

    Hori Y (2008) Electrochemical CO2 reduction on metal electrodes. Mod Asp Electrochem 42:89–189. doi:10.1007/978-0-387-49489-0_3

    CAS  Google Scholar 

  5. 5.

    Scibioh M, Viswanathan B (2004) Electrochemical reduction of carbon dioxide: a status report. Proc Indian Natl Sci Acad 70:407–462

    CAS  Google Scholar 

  6. 6.

    Whipple DT, Kenis PJA (2010) Prospects of CO2 utilization via direct heterogeneous electrochemical reduction. J Phys Chem Lett 1:3451–3458. doi:10.1021/jz1012627

    CAS  Article  Google Scholar 

  7. 7.

    Oloman C, Li H (2008) Electrochemical processing of carbon dioxide. ChemSusChem 1:385–391. doi:10.1002/cssc.200800015

    CAS  Article  Google Scholar 

  8. 8.

    Ma S, Lan Y, Perez GMJ, Moniri S, Kenis PJA (2014) Silver supported on titania as an active catalyst for electrochemical carbon dioxide reduction. ChemSusChem 7:866–874. doi:10.1002/cssc.201300934

    CAS  Article  Google Scholar 

  9. 9.

    Dufek EJ, Lister TE, McIlwain ME (2011) Bench-scale electrochemical system for generation of CO and syn-gas. J Appl Electrochem 41:623–631. doi:10.1007/s10800-011-0271-6

    CAS  Article  Google Scholar 

  10. 10.

    Alvarez-Guerra M, Quintanilla S, Irabien A (2012) Conversion of carbon dioxide into formate using a continuous electrochemical reduction process in a lead cathode. Chem Eng J 207–208:278–284. doi:10.1016/j.cej.2012.06.099

    Article  Google Scholar 

  11. 11.

    Prakash GS, Viva FA, Olah GA (2013) Electrochemical reduction of CO2 over Sn-Nafion® coated electrode for a fuel-cell-like device. J Power Sources 223:68–73. doi:10.1016/j.jpowsour.2012.09.036

    CAS  Article  Google Scholar 

  12. 12.

    Loges B, Boddien A, Gärtner F, Junge H, Beller M (2010) Catalytic generation of hydrogen from formic acid and its derivatives: useful hydrogen storage materials. Top Catal 53:902–914. doi:10.1007/s11244-010-9522-8

    CAS  Article  Google Scholar 

  13. 13.

    Makowski P, Thomas A, Kuhn P, Goettmann F (2009) Organic materials for hydrogen storage applications: from physisorption on organic solids to chemisorption in organic molecules. Energy Environ Sci 2:480–490. doi:10.1039/b822279g

    CAS  Article  Google Scholar 

  14. 14.

    Azuma M (1990) Electrochemical reduction of carbon dioxide on various metal electrodes in low-temperature aqueous KHCO3 media. J Electrochem Soc 137:1772–1776. doi:10.1149/1.2086796

    CAS  Article  Google Scholar 

  15. 15.

    Hori Y, Wakebe H, Tsukamoto T, Koga O (1994) Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim Acta 39:1833–1839. doi:10.1016/0013-4686(94)85172-7

    CAS  Article  Google Scholar 

  16. 16.

    Noda H, Ikeda S, Oda Y, Imai K, Maeda M, Ito K (1990) Electrochemical reduction of carbon dioxide at various metal electrodes in aqueous potassium hydrogen carbonate solution. Bull Chem Soc Jpn 63:2459–2462. doi:10.1246/bcsj.63.2459

    CAS  Article  Google Scholar 

  17. 17.

    Mahmood MN, Masheder D, Harty CJ (1987) Use of gas-diffusion electrodes for high-rate electrochemical reduction of carbon dioxide. I. Reduction at lead, indium- and tin-impregnated electrodes. J Appl Electrochem 17:1159–1170. doi:10.1007/BF01023599

    CAS  Article  Google Scholar 

  18. 18.

    Whipple DT, Finke EC, Kenis PJA (2010) Microfluidic reactor for the electrochemical reduction of carbon dioxide: the effect of pH. Electrochem Solid-State Lett 13:B109–B111. doi:10.1149/1.3456590

    CAS  Article  Google Scholar 

  19. 19.

    Furuya N, Yamazaki T, Shibata M (1997) High performance Ru-Pd catalysts for CO2 reduction at gas-diffusion electrodes. J Electroanal Chem 431:39–41. doi:10.1016/S0022-0728(97)00159-9

    CAS  Article  Google Scholar 

  20. 20.

    Hara K (1997) Electrocatalytic formation of CH4 from CO2 on a Pt gas diffusion electrode. J Electrochem Soc 144:539–545. doi:10.1149/1.1837445

    CAS  Article  Google Scholar 

  21. 21.

    Cook RL (1990) High rate gas phase CO2 reduction to ethylene and methane using gas diffusion electrodes. J Electrochem Soc 137:607–608. doi:10.1149/1.2086515

    CAS  Article  Google Scholar 

  22. 22.

    Dufek EJ, Lister TE, Stone SG, McIlwain ME (2012) Operation of a pressurized system for continuous reduction of CO2. J Electrochem Soc 159:F514–F517. doi:10.1149/2.011209jes

    CAS  Article  Google Scholar 

  23. 23.

    Gülzow E, Schulze M, Wagner N, Kaz T, Reissner R, Steinhilber G, Schneider A (2000) Dry layer preparation and characterisation of polymer electrolyte fuel cell components. J Power Sources 86:352–362. doi:10.1016/S0378-7753(99)00451-6

    Article  Google Scholar 

  24. 24.

    Yu J, Yoshikawa Y, Matsuura T, Islam MN, Hori M (2005) Preparing gas-diffusion layers of PEMFCs with a dry deposition technique. Electrochem Solid-State Lett 8:A152–A155. doi:10.1149/1.1854119

    CAS  Article  Google Scholar 

  25. 25.

    Li H, Oloman C (2006) Development of a continuous reactor for the electro-reduction of carbon dioxide to formate—Part 1: process variables. J Appl Electrochem 36:1105–1115. doi:10.1007/s10800-006-9194-z

    CAS  Article  Google Scholar 

  26. 26.

    Wagner N (2004). Verfahren und Vorrichtung zur Herstellung einer Elektrode. Patent No. DE 19940015 B9. Germany

  27. 27.

    Park S, Lee J, Popov BN (2012) A review of gas diffusion layer in PEM fuel cells: materials and designs. Int J Hydrog Energy 37:5850–5865. doi:10.1016/j.ijhydene.2011.12.148

    CAS  Article  Google Scholar 

  28. 28.

    Wagner N, Schulze M, Gülzow E (2004) Long term investigations of silver cathodes for alkaline fuel cells. J Power Sources 127:264–272. doi:10.1016/j.jpowsour.2003.09.022

    CAS  Article  Google Scholar 

  29. 29.

    Lv W, Zhang R, Gao P, Lei L (2014) Studies on the faradaic efficiency for electrochemical reduction of carbon dioxide to formate on tin electrode. J Power Sources 253:276–281. doi:10.1016/j.jpowsour.2013.12.063

    CAS  Article  Google Scholar 

  30. 30.

    Li H, Oloman C (2007) Development of a continuous reactor for the electro-reduction of carbon dioxide to formate—Part 2: scale-up. J Appl Electrochem 37:1107–1117. doi:10.1007/s10800-007-9371-8

    CAS  Article  Google Scholar 

  31. 31.

    Wu J, Sharma PP, Harris BH, Zhou X (2014) Electrochemical reduction of carbon dioxide: IV dependence of the Faradaic efficiency and current density on the microstructure and thickness of tin electrode. J Power Sources 258:189–194. doi:10.1016/j.jpowsour.2014.02.014

    CAS  Article  Google Scholar 

  32. 32.

    Zhang S, Kang P, Meyer TJ (2014) Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. J Am Chem Soc 136:1734–1737. doi:10.1021/ja4113885

    CAS  Article  Google Scholar 

  33. 33.

    Zhang S, Kang P, Ubnoske S, Brennaman MK, Song N, House RL, Glass JT, Meyer TJ (2014) Polyethylenimine-enhanced electrocatalytic reduction of CO2 to formate at nitrogen-doped carbon nanomaterials. J Am Chem Soc 136:7845–7848. doi:10.1021/ja5031529

    CAS  Article  Google Scholar 

  34. 34.

    Hara K, Kudo A, Sakata T (1995) Electrochemical reduction of carbon dioxide under high pressure on various electrodes in an aqueous electrolyte. J Electroanal Chem 391:141–147. doi:10.1016/0022-0728(95)03935-A

    Article  Google Scholar 

  35. 35.

    Todoroki M, Hara K, Kudo A, Sakata T (1995) Electrochemical reduction of high pressure CO2 at Pb, Hg and In electrodes in an aqueous KHCO3 solution. J Electroanal Chem 394:199–203. doi:10.1016/0022-0728(95)04010-L

    Article  Google Scholar 

  36. 36.

    Agarwal AS, Zhai Y, Hill D, Sridhar N (2011) The electrochemical reduction of carbon dioxide to formate/formic acid: engineering and economic feasibility. ChemSusChem 4:1301–1310. doi:10.1016/0022-0728(95)03935-A

    CAS  Article  Google Scholar 

  37. 37.

    Chen Y, Li CW, Kanan MW (2012) Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J Am Chem Soc 134:19969–19972. doi:10.1021/ja309317u

    CAS  Article  Google Scholar 

  38. 38.

    Wu J, Risalvato FG, Ke F, Pellechia PJ, Zhou X (2012) Electrochemical reduction of carbon dioxide I. Effects of the electrolyte on the selectivity and activity with Sn electrode. J Electrochem Soc 159:F353–F359. doi:10.1149/2.049207jes

    CAS  Article  Google Scholar 

  39. 39.

    Innocent B, Liaigre D, Pasquier D, Ropital F, Léger J, Kokoh KB (2009) Electro-reduction of carbon dioxide to formate on lead electrode in aqueous medium. J Appl Electrochem 39:227–232. doi:10.1007/s10800-008-9658-4

    CAS  Article  Google Scholar 

  40. 40.

    Gattrell M, Gupta N, Co A (2006) A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. J Electroanal Chem 594:1–19. doi:10.1016/j.jelechem.2006.05.013

    CAS  Article  Google Scholar 

  41. 41.

    Hori Y, Suzuki S (1982) Electrolytic reduction of carbon dioxide at mercury electrode in aqueous solution. Bull Chem Soc Jpn 55:660–665. doi:10.1246/bcsj.55.660

    CAS  Article  Google Scholar 

  42. 42.

    Gupta N, Gattrell M, MacDougall B (2006) Calculation for the cathode surface concentrations in the electrochemical reduction of CO2 in KHCO3 solutions. J Appl Electrochem 36:161–172. doi:10.1007/s10800-005-9058-y

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the German BMWi (Bundesministerium für Wirtschaft und Energie) for the financial support (03ET1037B), Ina Plock (DLR) for taking SEM images, Alexander Bauder (DLR) and the project partners (DLR, INVENIOS Europe GmbH, Plinke GmbH) for their collaboration. Special thanks also go to Prof. Albert Renken, EPFL Lausanne, for the fruitful discussions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. Kopljar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kopljar, D., Inan, A., Vindayer, P. et al. Electrochemical reduction of CO2 to formate at high current density using gas diffusion electrodes. J Appl Electrochem 44, 1107–1116 (2014). https://doi.org/10.1007/s10800-014-0731-x

Download citation

Keywords

  • Carbon dioxide
  • Electrochemical CO2 reduction
  • Gas diffusion electrodes
  • Formate
  • Formic acid