Skip to main content

Advertisement

Log in

Hydrodynamic analysis of flow fields for redox flow battery applications

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Electrolyte flow distribution is an important factor that contributes to the performance of the overall efficiency of a redox flow battery system. In the present paper, a comparative study of the hydrodynamics of the serpentine and interdigitated flow fields has been performed. Ex situ experiments were conducted using the two flow fields in conditions typical of flow battery applications. Limited in situ testing has also been conducted. These bring out the surprising result that the pressure drop in the interdigitated flow field is less than that in the serpentine for the same flow rate. Computational fluid dynamics studies show strong under-the-rib convection in the reaction zone exists in both flow fields but with a shorter residence time in case of the interdigitated. It is posited that this may explain the superior electrochemical performance of cells with interdigitated flow fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Horne CR, Mosso RJ (2013) Introducing EnerVault’s engineered cascade system: results from a novel redox flow battery architecture and use of mixed-species iron chromium electrolytes. Int Flow Battery Forum Proc 24–25

  2. Weber AZ, Mench MM, Meyers JP, Ross PN, Gostick JT, Liu Q (2011) Redox flow batteries: a review. J Appl Electrochem 41:1137–1164. doi:10.1007/s10800-011-0348-2

    Article  CAS  Google Scholar 

  3. Yang Z, Liu J, Baskaran S, Imhoff CH, Holladay JD (2010) Enabling renewable energy- and the future grid-with advanced electricity storage. JOM 62:14–23

    Article  Google Scholar 

  4. Yang Z, Zhang J, Kinter-Meyer MCW, Lu X, Choi D, Lemmon JP, Liu J (2011) Electrochemical energy storage for green grid. Chem Rev 111:3577–3613

    Article  CAS  Google Scholar 

  5. Skyllas-Kazacos M (2013) Flow battery research to flow battery commercialization. Int Flow Battery Forum Proc 42–44

  6. Li L, Kim S, Wang W, Vijayakumar M, Nie Z, Chen B, Zhang J, Xia G, Hu J, Graff G, Liu J, Yang Z (2011) A stable vanadium redox-flow battery with high energy density for large-scale energy storage. Adv Energy Mater 1:394–400. doi:10.1002/aenm.201100008

    Article  CAS  Google Scholar 

  7. Sun B, Skyllas-Kazacos M (1992) Modification of graphite electrode materials for vanadium redox flow battery application-I. Therm treat Electrochim Acta 37:1253. doi:10.1016/0013-4686(92)85064-R

    Article  CAS  Google Scholar 

  8. Sun B, Skyllas-Kazacos M (1992) Chemical modification of graphite electrode materials for vanadium redox flow battery application-part II. Acid Treat Electrochim Acta 37:2459. doi:10.1016/0013-4686(92)85064-R

    Article  CAS  Google Scholar 

  9. Pittman CU Jr, Jiang W, Yue ZR, Gardner S, Wang L, Toghianiband H, Leon CAL (1999) Surface properties of electrochemically oxidized carbon fibers. Carbon 37:1797–1807. doi:10.1016/S0008-6223(99)00048-2

    Article  CAS  Google Scholar 

  10. Sun BT, Skyllas-kazacos M (1991) Chemical modification and electrochemical behaviour of graphite fibre in acidic vanadium solution. Electrochim Acta 36:513–517. doi:10.1016/0013-4686(91)85135-T

    Article  CAS  Google Scholar 

  11. Wang W, Luo Q, Li B, Wei X, Li L, Yang Z (2013) Recent progress in redox flow battery research and development. Adv Funct Mater 23:970–986. doi:10.1002/adfm.201200694

    Article  CAS  Google Scholar 

  12. Li B, Gu M, Nie Z, Shao Y, Luo Q, Wei X, Li X, Xiao J, Wang C, Sprenkle V, Wang W (2013) Bismuth nanoparticle decorating graphite felt as a high-performance electrode for an all-vanadium redox flow battery. Nano Lett 13:1330–1335. doi:10.1021/nl400223v

    Article  Google Scholar 

  13. Kim S, Thomsen E, Xia G, Nie Z et al (2013) 1 kW/1 kWh advanced vanadium redox flow battery utilizing mixed acid electrolytes. J Power Sources 237:300–309. doi:10.1016/j.jpowsour.2013.02.045

    Article  CAS  Google Scholar 

  14. Li B, Li L, Wang W, Nie Z, Chen B, Wei X, Luo Q, Yang Z, Sprenkle V (2013) Fe/V redox flow battery electrolyte investigation and optimization. J Power Sources 229:1–5

    Article  CAS  Google Scholar 

  15. Wei X, Nie Z, Luo Q, Li B, Sprenkle V, Wang W (2013) Polyvinyl chloride/silica nanoporous composite separator for all-vanadium redox flow battery applications. J Electrochem Soc 160:A1215–A1218. doi:10.1149/2.087308jes

    Article  CAS  Google Scholar 

  16. Wei X, Nie Z, Luo Q, Li B, Chen B, Simmons K, Sprenkle V, Wang W (2013) Nanoporous polytetrafluoroethylene/silica composite separator as a high-performance all-vanadium redox flow battery membrane. Adv Energy Mater 3:1215–1220. doi:10.1002/aenm.201201112

    Article  CAS  Google Scholar 

  17. Hoberecht MA (1981) Pumping power considerations in the designs of NASA-Redox flow cells. US DOE Report No. DOE/NASA/12726-7 NASA TM-82598

  18. Li X, Sabir I (2005) Review of bipolar plates in PEM fuel cells: Flow-field designs. Int J Hydrog Energy 30:359–371. doi:10.1016/j.ijhydene.2004.09.019

    Article  CAS  Google Scholar 

  19. Suresh PV, Jayanti S, Deshpande AP (2011) An improved serpentine flow field with enhanced cross-flow for fuel cell applications. Int J Hydrog Energy 36:6067–6072. doi:10.1016/j.ijhydene.2011.01.147

    Article  CAS  Google Scholar 

  20. Jyothi Latha T, Jayanti S (2014) Ex-situ experimental studies on serpentine flow field design for redox flow battery systems. J Power Sources 248:140–146. doi:10.1016/j.jpowsour.2013.09.084

    Article  CAS  Google Scholar 

  21. Shyam Prasad KB, Jayanti S (2008) Effect of channel-to-channel cross-flow on local flooding in serpentine flow-fields. J Power Sources 180:227–231. doi:10.1016/j.jpowsour.2008.01.074

    Article  Google Scholar 

  22. Xiong B, Zhao J, Tseng KJ, Skyllas-Kazacos M, Lim TM, Zhang Y (2013) Thermal hydraulic behavior and efficiency analysis of an all-vanadium redox flow battery. J Power Sources 242:314–324. doi:10.1016/j.jpowsour.2013.05.092

    Article  CAS  Google Scholar 

  23. Kee JR, Korada P, Walters K, Pavol M (2002) A generalized model of the flow distribution in channel networks of planar fuel cells. J Power Sources 109:148–159. doi:10.1016/S0378-7753(02)00090-3

    Article  CAS  Google Scholar 

  24. Maharudrayya S, Jayanti S, Deshpande AP (2005) Flow distribution and pressure drop in parallel-channel configurations of planar fuel cells. J Power Sources 144:94–106. doi:10.1016/j.jpowsour.2004.12.018

    Article  CAS  Google Scholar 

  25. Miyabayashim M, Sato K, Tayama T, Kageyama Y, Oyama H (1998) Redox Flow type battery. US Patent 5,851,694

  26. Inoue M, Kobayashi M (1997) Electrode material for flow through type electrolytic cell, where in the electrode comprises carbonaceous material having at least one groove. US Patent 5,648,184

  27. Harper MAM (2010) Electrochemical battery incorporating internal manifolds. US Patent 7,682,728

  28. Harper MAM (2010) Electrochemical battery incorporating internal manifolds. US Patent 7,687,193

  29. Tiana C-H, Cheina R, Hsueh K-L, Wu C-H, Tsau F-H (2011) Design and modeling of electrolyte pumping power reduction in redox flow cells. Rare Met 30:16. doi:10.1007/s12598-011-0229-1

    Article  Google Scholar 

  30. Chen J-Q, Wang B-G, Yang J-C (2009) Adsorption and diffusion of VO2+ and VO2 + across cation membrane for all-vanadium redox flow battery. Solvent Extr Ion Exch 27:312–327. doi:10.1080/07366290802674614

    Article  CAS  Google Scholar 

  31. Xu Q, Zhao TS, Leung PK (2013) Numerical investigations of flow field designs for vanadium redox flow batteries. Appl Energy 105:47–56. doi:10.1016/j.apenergy.2012.12.041

    Article  CAS  Google Scholar 

  32. Zhu SQ, Chen JQ, Wang Q, Wang BG (2008) Influence of flow channel structure and electrolyte flow state on the performance of VRB. Battery 38:285–287

    CAS  Google Scholar 

  33. Aaron DS, Liu Q, Tang Z, Grim GM, Papandrew AB, Turhan A, Zawodzinski TA, Mench MM (2012) Dramatic performance gains in vanadium redox flow batteries through modified cell architecture. J Power Sources 206:50–453

    Article  Google Scholar 

  34. Tsushima S, Sasaki S, Hirai S (2013) Influence of cell geometry and operating parameters on performance of a redox flow battery with serpentine and interdigitated flow fields. In: Proceedings of ECS Meeting, San Francisco, October, 1664

  35. Koeppel BJ, Recknagle K, Stephenson D, Reed D, Thomsen Ed, Sprenkle V (2013) Redesign of a vanadium redox flow battery for reduced pressure loss using an interdigitated flow field. In: Proceedings of ECS Meeting, San Francisco, October, 1660

  36. Qiu G, Joshi AS, Dennison CR, Knehr KW, Kumbur EC, Sun Y (2012) A 3-D pore-scale resolved model for coupled species/charge/fluid transport in a vanadium redox flow battery. Electrochim Acta 64:46–64

    Article  CAS  Google Scholar 

  37. Escudero-González J, López-Jiménez PA (2014) Methodology to optimize fluid-dynamic design in a redox cell. J Power Sources 251:243–253

    Article  Google Scholar 

  38. Shyam Prasad KB, Suresh PV, Jayanti S (2009) A hydrodynamic network model for interdigitated flow fields. Int J Hydrog Energy 34:8289–8301. doi:10.1016/j.ijhydene.2009.07.107

    Article  Google Scholar 

  39. Hsieh SS, Yang SH, Kuo JK, Huang CF, Tsai HH (2006) Study of operational parameters on the performance of micro PEMFCs with different flow fields. Energy Convers Manag 47:1868–1878. doi:10.1016/j.enconman.2005.10.011

    Article  CAS  Google Scholar 

  40. Kays WM, Crawford ME (1980) Convective heat and mass transfer. Mc Graw-Hill, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jayanti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jyothi Latha, T., Jayanti, S. Hydrodynamic analysis of flow fields for redox flow battery applications. J Appl Electrochem 44, 995–1006 (2014). https://doi.org/10.1007/s10800-014-0720-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-014-0720-0

Keywords

Navigation