Journal of Applied Electrochemistry

, Volume 44, Issue 9, pp 1037–1045 | Cite as

CsHSO4 as proton conductor for high-temperature polymer electrolyte membrane fuel cells

  • Olivia Barron
  • Huaneng Su
  • Vladimir Linkov
  • Bruno G. Pollet
  • Sivakumar Pasupathi
Research Article
Part of the following topical collections:
  1. Fuel cells


The influence of CsHSO4 inorganic solid acid was evaluated as a possible proton conductor in the catalyst layer of ABPBI (poly(2,5-benzimidazole))-based high-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs). Gas diffusion electrodes (GDEs) were prepared with fixed polytetrafluoroethylene (PTFE) and polyvinylidene diflouride (PVDF) binder content, while the CsHSO4 loading was varied. Porosimetry data showed that the addition of 10 % CsHSO4 to the PVDF GDE increased the porosity across all the pore regions, whereas the addition of 10 % CsHSO4 to the PTFE GDE decreased the GDEs porosity. The CsHSO4 MEAs showed good proton transfer dynamics and low resistance for fuel cell operation. An optimum loading of 10 % CsHSO4 in conjunction with either of the binders was observed, with CsHSO4–PVDF GDE achieving peak power of 498.2 mW cm−2 at a cell voltage of +352 mV. Higher CsHSO4 loadings increased the charge transfer resistance and lowered the cell performance of these GDEs.


High-temperature polymer electrolyte membrane fuel cell Catalyst layer Gas diffusion electrode Poly(2,5-benzimidazole) CsHSO4 



This work is supported by Hydrogen and Fuel Cell Technologies RDI Programme (HySA), funded by the Department of Science and Technology in South Africa, project KP1S01.


  1. 1.
    Freire T, Gonzalez ER (2001) Effect of membrane characteristics and humidification conditions on the impedance response of polymer electrolyte membrane fuel cells. J Electroanal Chem 503:57–68CrossRefGoogle Scholar
  2. 2.
    Oono Y, Fukuda T, Sounai A, Hori M (2010) Influence of operating temperature on cell performance and endurance of high temperature proton exchange membrane fuel cells. J Power Sour 195:1007–1014CrossRefGoogle Scholar
  3. 3.
    Krishnan P, Park J-S, Kim C-S (2006) Performance of a poly(2,5-benzimidazole) membrane based high temperature PEM fuel cell in the presence of carbon monoxide. J Power Sour 159(2):817–823CrossRefGoogle Scholar
  4. 4.
    Wainright JS, Wang JT, Weng D, Savinell RF, Litt M (1995) Acid-doped polybenzimidazoles: a new polymer electrolyte. J Electrochem Soc 142(7):L121–L123CrossRefGoogle Scholar
  5. 5.
    Weng D, Wainright JS, Landau U, Savinell RF (1996) Electro-osmotic drag coefficient of water and methanol in polymer electrolytes at elevated temperatures. J Electrochem Soc 143(4):1260–1263CrossRefGoogle Scholar
  6. 6.
    Wannek C, Lehnert W, Mergel J (2009) Membrane electrode assemblies for high-temperature polymer electrolyte fuel cells based on poly(2,5-benzimidazole) membranes with phosphoric acid impregnation via the catalyst layers. J Power Sour 192(2):258–266CrossRefGoogle Scholar
  7. 7.
    Kwon K, Kim TY, Yoo DY, Hong S-G, Park JO (2009) Maximization of high-temperature proton exchange membrane fuel cell performance with the optimum distribution of phosphoric acid. J Power Sour 188(2):463–467CrossRefGoogle Scholar
  8. 8.
    Wang J-T, Savinell RF, Wainright J, Litt M, Yu H (1996) A H2/O2 fuel cell using acid doped polybenzimidazole as polymer electrolyte. Electrochim Acta 41(2):193–197CrossRefGoogle Scholar
  9. 9.
    Linares JJ, Sánches C, Paganin VA, González ER (2011) Poly(2,5-benzimidazole) membranes: physico-chemical characterization and high temperature PEMFC application. In: 11th polymer electrolyte fuel cell symposium, PEFC 11–220th ECS Meeting, Boston. pp 1579–1593Google Scholar
  10. 10.
    Asensio J (2004) Proton-conducting membranes based on poly(2,5-benzimidazole) (ABPBI) and phosphoric acid prepared by direct acid casting. J Membr Sci 241(1):89–93CrossRefGoogle Scholar
  11. 11.
    Asensio J, Gómez-Romero P (2005) Recent developments on proton conducting poly(2,5-benzimidazole) (ABPBI) membrane for high temperature polymer electrolyte membrane fuel cells. Fuel Cells 5(3):336–343CrossRefGoogle Scholar
  12. 12.
    Qingfeng L, Hjuler HA, Bjerrum NJ (2000) Oxygen reduction on carbon supported platinum catalysts in high temperature polymer electrolytes. Electrochim Acta 45:4219–4226CrossRefGoogle Scholar
  13. 13.
    Lobato J, Cañizares P, Rodrigo MA, Linares JJ (2007) PBI-based polymer electrolyte membranes fuel cells Temperature effects on cell performance and catalyst stability. Electrochim Acta 52(12):3910–3920CrossRefGoogle Scholar
  14. 14.
    Oh H-S, Lee J-H, Kim H (2012) Electrochemical carbon corrosion in high temperature proton exchange membrane fuel cells. Int J Hydrogen Energy 37(14):10844–10849CrossRefGoogle Scholar
  15. 15.
    Angioni S, Righetti PP, Quartarone E, Dilena E, Mustarelli P, Magistris A (2011) Novel aryloxy-polybenzimidazoles as proton conducting membranes for high temperature PEMFCs. Int J Hydrogen Energy 36(12):7174–7182CrossRefGoogle Scholar
  16. 16.
    Asensio JA, Borrós S, Gómez-Romero P (2003) Enhanced conductivity in polyanion-containing polybenzimidazoles. Improved materials for proton-exchange membranes and PEM fuel cells. Electrochem Commun 5(11):967–972CrossRefGoogle Scholar
  17. 17.
    Carollo A, Quartarone E, Tomasi C, Mustarelli P, Belotti F, Magistris A, Maestroni F, Parachini M, Garlaschelli L, Righetti PP (2006) Developments of new proton conducting membranes based on different polybenzimidazole structures for fuel cells applications. J Power Sour 160(1):175–180CrossRefGoogle Scholar
  18. 18.
    Lobato J, Cañizares P, Rodrigo MA, Úbeda D, Pinar FJ (2011) Enhancement of the fuel cell performance of a high temperature proton exchange membrane fuel cell running with titanium composite polybenzimidazole-based membranes. J Power Sour 196:8265–8271CrossRefGoogle Scholar
  19. 19.
    Kumbharkar SC, Islam MN, Potrekar RA, Kharul UK (2009) Variation in acid moiety of polybenzimidazoles: investigation of physico-chemical properties towards their applicability as proton exchange and gas separation membrane materials. Polymer 50(6):1403–1413CrossRefGoogle Scholar
  20. 20.
    Li M, Scott K (2010) A polymer electrolyte membrane for high temperature fuel cells to fit vehicle applications. Electrochim Acta 55(6):2123–2128CrossRefGoogle Scholar
  21. 21.
    Wang RF, Liao SJ, Fu ZY, Ji S (2008) Platinum free ternary electrocatalysts prepared via organic colloidal method for oxygen reduction. Electrochem Commun 10(4):523–526CrossRefGoogle Scholar
  22. 22.
    Hasiotis C, Deimede V, Kontoyannis C (2001) New polymer electrolytes based on blends of sulfonated polysulfones with polybenzimidazole. Electrochim Acta 46:2401–2406CrossRefGoogle Scholar
  23. 23.
    Pinar FJ, Cañizares P, Rodrigo MA, Ubeda D, Lobato J (2012) Titanium composite PBI-based membranes for high temperature polymer electrolyte membrane fuel cells. Effect on titanium dioxide amount. RSC Adv 2(4):1547CrossRefGoogle Scholar
  24. 24.
    Linares JJ, Sanches C, Paganin VA, Gonzalez ER (2012) Poly(2,5-bibenzimidazole) membranes: physico-chemical characterization focused on fuel cell applications. J Electrochem Soc 159(7):F194–F202CrossRefGoogle Scholar
  25. 25.
    Fujigaya T, Okamoto M, Nakashima N (2009) Design of an assembly of pyridine-containing polybenzimidazole, carbon nanotubes and Pt nanoparticles for a fuel cell electrocatalyst with a high electrochemically active surface area. Carbon 47(14):3227–3232CrossRefGoogle Scholar
  26. 26.
    Jin YC, Okada M, Hibino T (2011) A comparative study of Pt/C cathodes in Sn0.9In0.1P2O7 and H3PO4 ionomers for high-temperature proton exchange membrane fuel cells. J Power Sour 196(11):4905–4910CrossRefGoogle Scholar
  27. 27.
    Li H, Liao SJ (2009) Preparation of large Co nanosheets with enhanced coercivity by a magnetic-field-assisted solvothermal approach free of surfactants, complexants or templates. J Magn Magn Mater 321(17):2566–2570CrossRefGoogle Scholar
  28. 28.
    Pan C, Li Q, Jensen JO, He R, Cleemann LN, Nilsson MS, Bjerrum NJ, Zeng Q (2007) Preparation and operation of gas diffusion electrodes for high-temperature proton exchange membrane fuel cells. J Power Sour 172(1):278–286CrossRefGoogle Scholar
  29. 29.
    Mazúr P, Soukop J, Paidar M, Bouzek K (2011) Gas diffusion electrodes for high temperature PEM type fuel cells-role of a polymer binder and method of the catalyst layer deposition. J Appl Electrochem 41:1013–1019CrossRefGoogle Scholar
  30. 30.
    Lobato J, Cañizares P, Rodrigo MA, Linares JJ, Pinar FJ (2010) Study of the influence of the amount of PBI–H3PO4 in the catalytic layer of a high temperature PEMFC. Int J Hydrogen Energy 35(3):1347–1355CrossRefGoogle Scholar
  31. 31.
    Oono Y, Sounai A, Hori M (2009) Influence of the phosphoric acid-doping level in a polybenzimidazole membrane on the cell performance of high-temperature proton exchange membrane fuel cells. J Power Sour 189(2):943–949CrossRefGoogle Scholar
  32. 32.
    Su H, Pasupathi S, Bladergroen B, Linkov V, Pollet BG (2013) Optimization of gas diffusion electrode for polybenzimidazole-based high temperature proton exchange membrane fuel cell: evaluation of polymer binders in catalyst layer. Int J Hydrogen Energy 38(26):11370–11378CrossRefGoogle Scholar
  33. 33.
    Felix C, Jao T-C, Pasupathi S, Pollet BG (2013) Optimisation of electrophoretic deposition parameters for gas diffusion electrodes in high temperature polymer electrolyte membrane fuel cells. J Power Sour 243:40–47CrossRefGoogle Scholar
  34. 34.
    Higuchi E, Okamoto K, Miyatake K, Uchida H, Watanabe M (2006) Gas diffusion electrodes for polymer electrolyte fuel cell using sulfonated polyimide. Res Chem Intermed 32(5–6):533–542CrossRefGoogle Scholar
  35. 35.
    Lobato J, Cañizares P, Rodrigo MA, Úbeda D, Pinar FJ, Linares JJ (2010) Optimisation of the microporous layer for a polybenzimidazole-based high temperature PEMFC. Effect of carbon content. Fuel Cells 10(5):770CrossRefGoogle Scholar
  36. 36.
    Park JO, Kwon K, Cho MD, Hong S-G, Kim TY, Yoo DY (2011) Role of binders in high temperature PEMFC electrode. J Electrochem Soc 158(6):B675–B681CrossRefGoogle Scholar
  37. 37.
    Haile SM, Boysen DA, Chisholm C, Merle RB (2001) Solid acids as fuel cell electrolytes. Nature 410:910–913CrossRefGoogle Scholar
  38. 38.
    Lavrova G, Russkih M, Ponomareva V, Uvarov N (2006) Intermediate-temperature fuel cell based on the proton-conducting composite membranes. Solid State Ion 177(19–25):2129–2132CrossRefGoogle Scholar
  39. 39.
    Piao J, Liao S, Liang Z (2009) A novel cesium hydrogen sulfate–zeolite inorganic composite electrolyte membrane for polymer electrolyte membrane fuel cell application. J Power Sour 193(2):483–487CrossRefGoogle Scholar
  40. 40.
    Lee H-K, Park J-H, Kim D-Y, Lee T-H (2004) A study on the characteristics of the diffusion layer thickness and porosity of the PEMFC. J Power Sour 131(1–2):200–206CrossRefGoogle Scholar
  41. 41.
    Yuan X, Wang H, Colinsun J, Zhang J (2007) AC impedance technique in PEM fuel cell diagnosis—a review. Int J Hydrogen Energy 32(17):4365–4380CrossRefGoogle Scholar
  42. 42.
    Kim J-R, Yi JS, Song T-W (2012) Investigation of degradation mechanisms of a high-temperature polymer-electrolyte-membrane fuel cell stack by electrochemical impedance spectroscopy. J Power Sour 220:54–64CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Olivia Barron
    • 1
  • Huaneng Su
    • 1
  • Vladimir Linkov
    • 1
  • Bruno G. Pollet
    • 1
  • Sivakumar Pasupathi
    • 1
  1. 1.HySA Systems Competence Centre, South African Institute for Advanced Materials ChemistryUniversity of the Western CapeBellvilleSouth Africa

Personalised recommendations