Skip to main content
Log in

Corrosion of the zinc negative electrode of zinc–cerium hybrid redox flow batteries in methanesulfonic acid

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Corrosion of zinc in aqueous methanesulfonic acid has been evaluated over a wide range of concentrations of acid (0.5–5 mol dm−3), dissolved zinc (0.5–2 mol dm−3), and electrolyte temperature (22–50 °C). The corrosion rate of zinc, in terms of weight loss and the volume of hydrogen evolved, varied with time and it was found to be highly dependent on the surface state and electrolyte conditions. With an initial active layer of zinc present, the corrosion rate rapidly increased following a decline when the proton concentration in the solution decreased to ca. 0.56 mol dm−3. Organic and inorganic inhibitors were added to the electrolyte to suppress the zinc corrosion in 1 mol dm−3 methanesulfonic acid. The strong adsorption and blocking effects of cationic organic adsorption inhibitors, such as cetyltrimethyl ammonium bromide and butyltriphenyl phosphonium chloride, led to a significant decrease in zinc corrosion over a 10 h immersion period. With the addition of indium and lead ions inhibitors, the zinc surface showed less activity. Zinc corrosion continued to a smaller extent in the presence of these metallic inhibitors during the first few hours, but the metallic layer of the inhibitors did not cover the surface completely resulting in continued hydrogen evolution and making the inhibitors less effective at longer times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

A :

Electrode area exposed to the electrolyte (m2)

B :

Constant in the Stern–Geary equation (V)

F :

Faraday constant (C mol−1)

J :

Current density (mA cm−2)

E cell :

Cell potential (V)

E cor :

Corrosion potential (V)

I cor :

Corrosion current (A)

j cor :

Corrosion current density (mA cm−2)

M :

Molar mass of zinc (g mol−1)

R p :

Linear polarization area resistance (Ω cm2)

z :

Number of electrons involved in the reaction (dimensionless)

V m :

Molar volume of hydrogen under standard conditions (cm3 mol−1)

V i , V 0 :

Volume of hydrogen evolved in the presence, absence of corrosion inhibitor (cm3)

β a, β c :

Anodic, cathodic Tafel slope (V decade−1)

Θ :

Inhibition efficiency (dimensionless)

References

  1. Biensan Ph, Simon B, Pérès JP, Guibert A, Broussely M, Bodet JM, Perton F (1999) On safety of lithium-ion cells. J Power Source 81–82:906–912. doi:10.1016/S0378-7753(99)00135-4

    Article  Google Scholar 

  2. Ponce de León C, Frías-Ferrer A, González-García J, Szánto DA, Walsh FC (2006) Redox flow cells for energy conversion. J Power Source 160:716–732. doi:10.1016/j.jpowsour.2006.02.095

    Article  Google Scholar 

  3. Symons PC (1973) In: International conference on electrolytes for power sources. The Journal of The Electrochemical Society, Brighton

  4. Symons PC (1970) Process for electrical energy using solid halogen hydrates. US Patent 3713888

  5. Butler PC, Miller DW, Verardo AE (1982) In: 17th Intersocial Energy Conversion Engineering Conference, Los Angeles, USA

  6. Lim HS, Lackner AM, Knechtli RC (1977) Zinc–bromine secondary battery. J Electrochem Soc 124:1154–1157. doi:10.1149/1.2133517

    Article  CAS  Google Scholar 

  7. Clarke R (2009) Zinc air battery with acid electrolyte. US Patent 7582385, p B2

  8. Clarke RL, Dougherty BJ, Harrison S, Millington JP, Mohanta S (2005) Battery with bifunctional electrolyte. US 2006/0063065A1

  9. Clarke RL, Dougherty BJ, Harrison S, Millington JP, Mohanta S (2004) Cerium batteries. US Patent 2004/0202925A1

  10. Walsh FC, Ponce de Léon C, Berlouis L, Nikiforidis G, Arenas-Martinez LF, Hodgson D, Hall D (2014) The development of Zn–Ce hybrid redox flow batteries for energy storage and their continuing challenges. ChemPlusChem (Submitted)

  11. Leung PK, Low CTJ, Ponce de Leon C, Walsh FC (2011) Ce(III)/Ce(IV) in methanesulfonic acid as the positive half-cell of a redox flow battery. Electrochim Acta 56:2145–2153. doi:10.1016/j.electacta.2010.12.038

    Article  CAS  Google Scholar 

  12. Leung PK, Low CTJ, Ponce de Leon C, Walsh FC (2011) Characterization of a zinc–cerium flow battery. J Power Source 196:5174–5185. doi:10.1016/j.jpowsour.2011.01.095

    Article  CAS  Google Scholar 

  13. Leung PK, Ponce de Leon C, Walsh FC (2011) An undivided zinc–cerium redox flow battery operating at room temperature (295 K). Electrochem Commun 13:770–773. doi:10.1016/j.elecom.2011.04.011

    Article  CAS  Google Scholar 

  14. Leung PK, Ponce de Leόn C, Walsh FC (2012) The influence of operational parameters on the performance of an undivided zinc–cerium flow battery. Electrochim Acta 80:7–14. doi:10.1016/j.electacta.2012.06.074

    Article  CAS  Google Scholar 

  15. Nikiforidis G, Berlouis L, Hall D, Hodgson D (2011) Evaluation of carbon composite materials for the negative electrode in the zinc–cerium redox flow cell. J Power Source 206:497–503. doi:10.1016/j.jpowsour.2011.01.036

    Article  Google Scholar 

  16. Nikiforidis G, Berlouis L, Hall D, Hodgson D (2013) Impact of electrolyte composition on the performance of the zinc–cerium redox flow battery system. J Power Source 243:691–693. doi:10.1016/j.jpowsour.2013.06.045

    Article  CAS  Google Scholar 

  17. Stajević D, Tošković D, Rajković MB (2005) Intensification of zinc dissolution process in sulphuric acid. J Min Metall B 41:47–66

    Article  Google Scholar 

  18. Fouda AS, Madkour LH, EI-Shafel AA, Abd EIMaboud SA (1995) Corrosion inhibitors for zinc in 2 M HCl solution. Bull Korean Chem Soc 16:454–458

    CAS  Google Scholar 

  19. Abiola OK, James AO (2010) The effects of Aloe vera extract on corrosion and kinetics of corrosion process of zinc in HCl solution. Corros Sci 52:661–664. doi:10.1016/j.corsci.2009.10.026

    Article  CAS  Google Scholar 

  20. Wang L, Pu JX, Luo HC (2003) Corrosion inhibition of zinc in phosphoric acid solution by 2-mercaptobenzimidazole. Corros Sci 45:677–683. doi:10.1016/S0010-938X(02)00145-2

    Article  CAS  Google Scholar 

  21. Pan J, Sun Y, Cheng J, Wen Y, Yang Y, Wan P (2008) Study on a new single flow acid Cu–PbO2 battery. Electrochem Commun 10:1226–1229. doi:10.1016/j.elecom.2008.06.008

    Article  CAS  Google Scholar 

  22. Kreh RP, Spotnitz RM, Lundquist JT (1989) Mediated electrochemical synthesis of aromatic aldehydes, ketones, and quinones using ceric methanesulfonate. J Org Chem 54:1526–1531. doi:10.1021/jo00268a010

    Article  CAS  Google Scholar 

  23. Hazza A, Pletcher D, Wills RGA (2004) A novel flow battery: a lead acid battery based on an electrolyte with soluble lead(II), Part I. Preliminary studies. Phys Chem Chem Phys 6:1773–1778. doi:10.1039/B401115E

    Article  CAS  Google Scholar 

  24. Gernon MD, Wu M, Buszta T, Janney P (1999) Environmental benefits of methanesulfonic acid. Comparative properties and advantages. Green Chem 1:127–140. doi:10.1039/A900157C

    Article  CAS  Google Scholar 

  25. Brodt G, Haas J, Hesse W, Jäqer HU (2003) Method for electrolytic galvanising using electrolytes containing alkane sulphonic acid. US 2003/0141195A1

  26. Zhang XG (1996) Corrosion and electrochemistry of zinc. Plenum Press, New York. doi:10.1007/978-1-4757-9877-7

  27. Mouanga M, Berçot P, Rauch JY (2010) Comparison of corrosion behaviour of zinc in NaCl and in NaOH solutions. Part I: corrosion layer characterization. Corros Sci 52:3984–3992. doi:10.1016/j.corsci.2010.08.003

    Article  CAS  Google Scholar 

  28. Feitknecht W (1959) Studies on the influence of chemical factors on the corrosion of metals. Chem Ind 36:1102–1109

    Google Scholar 

  29. P.D.F.A. Index (1988) International Centre for Diffraction Data, Swarthmore, File4-831, ICDD

  30. Gomes A, da Silva Pereira MI (2006) Pulsed electrodeposition of Zn in the presence of surfactants. Electrochim Acta 51:1342–1450. doi:10.1016/j.electacta.2005.06.023

    Article  CAS  Google Scholar 

  31. Patterson AL (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56:978–986. doi:10.1103/PhysRev.56.978

    Article  CAS  Google Scholar 

  32. Macias A, Andrade C (1987) Corrosion of galvanized steel reinforcements in alkaline solutions: Part 1: electrochemical results. Br Corros J 22:113–118. doi:10.1179/000705987798271631

    Article  CAS  Google Scholar 

  33. Chang JC, Wei HH (1990) Electrochemical and Mössbauer studies of the corrosion behavior of electrodeposited FeZn alloys on steel. Corros Sci 30:831–837. doi:10.1016/0010-938X(90)90006-Q

    Article  CAS  Google Scholar 

  34. Muralidharan VS, Rajagopalan KS (1978) Kinetics and mechanism of corrosion of zinc in sodium hydroxide solutions by steady-state and transient methods. J Electroanal Chem 94:21–36. doi:10.1016/S0022-0728(78)80395-7

    Article  CAS  Google Scholar 

  35. Kear G, Walsh FC (2005) The characteristics of a true Tafel slope. Corros Mater 30:S1–S5

    CAS  Google Scholar 

  36. Mouanga M, Berçot P (2010) Comparison of corrosion behaviour of zinc in NaCl and in NaOH solutions; Part II: electrochemical analyses. Corros Sci 52:3993–4000. doi:10.1016/j.corsci.2010.08.018

    Article  CAS  Google Scholar 

  37. Clarke RL, Dougherty B, Harrison S, Millington JP, Mohanta S (2004) Lanthanide batteries. USP 20040197651

  38. Orubite-Okorosaye K, Oforka NC (2004) Corrosion inhibition of zinc in HCl using Nypa fruticans Wurmb extract and 1,5 diphenyl carbazonen. J Appl Sci Environ Manag 8:57–61

    CAS  Google Scholar 

  39. Snyder RN, Lander JJ (1965) Rate of hydrogen evolution of zinc electrodes in alkaline solutions. Electrochem Technol 3:161–166

    CAS  Google Scholar 

  40. Ruetschi P (1967) Solubility and diffusion of hydrogen in strong electrolytes and the generation and consumption of hydrogen in sealed primary batteries. J Electrochem Soc 114:301–305. doi:10.1149/1.2426582

    Article  CAS  Google Scholar 

  41. Dirkse TP, Timmer R (1969) The corrosion of zinc in KOH solutions. J Electrochem Soc 116:162–165. doi:10.1149/1.2411786

    Article  CAS  Google Scholar 

  42. Gregory DP, Jones PC, Redfearn DP (1972) The corrosion of zinc anodes in aqueous alkaline electrolytes. J Electrochem Soc 119:1288–1292. doi:10.1149/1.2403980

    Article  CAS  Google Scholar 

  43. Bockris JOM, Nagy Z, Damjanovic A (1972) On the deposition and dissolution of zinc in alkaline solutions. J Electrochem Soc 119:285–295. doi:10.1149/1.2404188

  44. Meeus ML, Strauven YAJ, Groothaert LAJ (1985) Zinc powder for alkaline batteries. European Patent Application, EP 161701 A1 19851121

  45. Glaeser W, Künzel-Keune S, Merkel P (1999) The influence of discharge time on post-partial discharge gassing of zinc powder. J Power Source 80:72–77. doi:10.1016/S0378-7753(98)00252-3

    Article  CAS  Google Scholar 

  46. Henriksen GL (1981) Zinc halogen battery electrolyte composition with lead additive. USP 4036003

  47. Era A, Takehara Z, Yoshizawa S (1968) Influence of impurities especially lead contained in manganese dioxide upon the self-discharge of the Leclanche dry cell. Electrochim Acta 13:383–396. doi:10.1016/0013-4686(68)87010-0

    Article  CAS  Google Scholar 

  48. Sato Y, Takahashi M, Assakura M, Yoshida H, Tada T, Kobayakawa K, Chiba N, Yoshida K (1992) Gas evolution behavior of Zn alloy powder in KOH solution. J Power Source 38:317–325. doi:10.1016/0378-7753(92)80121-Q

    Article  CAS  Google Scholar 

  49. Zhu JL, Zhou YH, Gao CQ (1998) Influence of surfactants on electrochemical behavior of zinc electrodes in alkaline solution. J Power Source 72:231–235. doi:10.1016/S0378-7753(97)02705-5

    Article  CAS  Google Scholar 

  50. Morad MS (2000) An electrochemical study on the inhibiting action of some organic phosphonium compounds on the corrosion of mild steel in aerated acid solutions. Corros Sci 42:1307–1326. doi:10.1016/S0010-938X(99)00138-9

    Article  CAS  Google Scholar 

  51. Leung PK, Ponce de Leόn C, Low CTJ, Walsh FC (2011) Zinc deposition and dissolution in methanesulfonic acid onto a carbon composite electrode as the negative electrode reactions in a hybrid redox flow battery. Electrochim Acta 56:6536–6546. doi:10.1016/j.electacta.2011.04.111

    Article  CAS  Google Scholar 

  52. Shah MD, Panchal VA, Mudaliar GV, Shah NK (2011) Inhibitive effect of salicylidene-N-N′-dimorpholine towards corrosion of zinc in hydrochloric acid. Anti-Corros Methods Mater 58:125–130. doi:10.1108/00035591111130505

    CAS  Google Scholar 

Download references

Acknowledgments

Financial support has been provided by the Research Institute for Industry (RIfI) at the University of Southampton. The authors are grateful to Drs. L. Berlouis and G. Nikiforidis, University of Strathclyde for helpful discussions and particularly appreciate the training in XRD provided by Dr. Mark Light. This work represents part of P.K. Leung’s PhD research programme on the development of zinc-based flow batteries for energy storage and conversion technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Ponce-de-León.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leung, P.K., Ponce-de-León, C., Recio, F.J. et al. Corrosion of the zinc negative electrode of zinc–cerium hybrid redox flow batteries in methanesulfonic acid. J Appl Electrochem 44, 1025–1035 (2014). https://doi.org/10.1007/s10800-014-0714-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-014-0714-y

Keywords

Navigation