Skip to main content
Log in

Simultaneous determination of catechol and hydroquinone based on poly(sulfosalicylic acid)/functionalized graphene modified electrode

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A glassy carbon electrode (GCE) modified with poly(sulfosalicylic acid) (PSA) and poly(diallyldimethylammonium chloride)-graphene (PDDA-GN) was prepared by a simple self-assembly method. The formation of films was ascribed to the electrostatic force between negatively charged PSA and positively charged PDDA-GN as well as the π–π stacking interaction between PSA and PDDA-GN. The as prepared films were characterized by scanning electron microscopy (SEM), Raman spectroscopy and electrochemical methods. Under the optimized condition, the modified GCE showed two well-defined redox waves for catechol (CT) and hydroquinone (HQ) in cyclic voltammetry (CV) with a peak potential separation of 111 mV, which ensured the anti-interference ability of the electrochemical sensor and made simultaneous determination of dihydroxybenzene isomers possible in real samples. The corresponding oxidation currents increased remarkably compared with those obtained at the bare GCE, PSA/GCE and PDDA-GN/GCE, respectively. Differential pulse voltammetry (DPV) was used for the simultaneous determination of CT and HQ. The anodic peak current of CT was linear in the concentration from 1 × 10−6 to 4 × 10−4 M in the presence of 3 × 10−5 M HQ, and the detection limit was 2.2 × 10−7 M (S/N = 3). At the same time, the anodic peak current of HQ was linear in the concentration from 2 × 10−6 to 4 × 10−4 M in the presence of 2 × 10−5 M CT, and the detection limit was 3.9 × 10−7 M (S/N = 3). The proposed method was applied to simultaneous determination of CT and HQ in tap water with satisfactory results. These results indicated that PSA/PDDA-GN is a promising modified material with great potential in electrocatalysis and electrochemical sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang J, Park JN, Wei XY, Lee CW (2003) Room-temperature heterogeneous hydroxylation of phenol with hydrogen peroxide over Fe2+, Co2+ ion-exchanged Naβ zeolite. Chem Commun 5:628–629

    Article  Google Scholar 

  2. Xie T, Liu Q, Shi Y, Liu Q (2006) Simultaneous determination of positional isomers of benzenediols by capillary zone electrophoresis with square wave amperometric detection. J Chromatogr A 1109(2):317–321

    Article  CAS  Google Scholar 

  3. Cui H, He C, Zhao G (1999) Determination of polyphenols by high-performance liquid chromatography with inhibited chemiluminescence detection. J Chromatogr A 855(1):171–179

    Article  CAS  Google Scholar 

  4. Guan N, Zeng Z, Wang Y, Fu E, Cheng J (2000) Open tubular capillary electrochromatography in fused-silica capillaries chemically bonded with macrocyclic dioxopolyamine. Anal Chim Acta 418:145–151

    Article  CAS  Google Scholar 

  5. Sun YG, Cui H, Li YH, Lin XQ (2000) Determination of some catechol derivatives by a flow injection electrochemiluminescent inhibition method. Talanta 53(3):661–666

    Article  CAS  Google Scholar 

  6. Nagaraja P, Vasantha R, Sunitha K (2001) A new sensitive and selective spectrophotometric method for the determination of catechol derivatives and its pharmaceutical preparations. J Pharm Biomed Anal 25(3):417–424

    Article  CAS  Google Scholar 

  7. Guo Q, Huang J, Chen P, Liu Y, Hou H, You T (2012) Simultaneous determination of catechol and hydroquinone using electrospun carbon nanofibers modified electrode. Sens Actuators B 163(1):179–185

    Article  CAS  Google Scholar 

  8. Amiri M, Ghaffari S, Bezaatpour A, Marken F (2012) Carbon nanoparticle–chitosan composite electrode with anion, cation, and neutral binding sites: dihydroxybenzene selectivity. Sens Actuators B 162(1):194–200

    Article  CAS  Google Scholar 

  9. Yu J, Du W, Zhao F, Zeng B (2009) High sensitive simultaneous determination of catechol and hydroquinone at mesoporous carbon CMK-3 electrode in comparison with multi-walled carbon nanotubes and Vulcan XC-72 carbon electrodes. Electrochim Acta 54(3):984–988

    Article  CAS  Google Scholar 

  10. Yin H, Zhang Q, Zhou Y, Ma Q, Liu T, Zhu L, Ai S (2011) Electrochemical behavior of catechol, resorcinol and hydroquinone at graphene–chitosan composite film modified glassy carbon electrode and their simultaneous determination in water samples. Electrochim Acta 56(6):2748–2753

    Article  CAS  Google Scholar 

  11. Wang L, Huang PF, Bai JY, Wang HJ, Zhang LY, Zhao YQ (2007) Covalent modification of a glassy carbon electrode with penicillamine for simultaneous determination of hydroquinone and catechol. Microchim Acta 158(1–2):151–157

    Article  CAS  Google Scholar 

  12. Qi H, Zhang C (2005) Simultaneous determination of hydroquinone and catechol at a glassy carbon electrode modified with multiwall carbon nanotubes. Electroanalysis 17(10):832–838

    Article  CAS  Google Scholar 

  13. Ahammad A, Rahman MM, Xu GR, Kim S, Lee JJ (2011) Highly sensitive and simultaneous determination of hydroquinone and catechol at poly(thionine) modified glassy carbon electrode. Electrochim Acta 56(14):5266–5271

    Article  CAS  Google Scholar 

  14. Huang KJ, Wang L, Liu YJ, Gan T, Liu YM, Wang LL, Fan Y (2013) Synthesis and electrochemical performances of layered tungsten sulfide–graphene nanocomposite as a sensing platform for catechol, resorcinol and hydroquinone. Electrochim Acta 107:379–387

    Article  CAS  Google Scholar 

  15. Si W, Lei W, Zhang Y, Xia M, Wang F, Hao Q (2012) Electrodeposition of graphene oxide doped poly(3, 4-ethylenedioxythiophene) film and its electrochemical sensing of catechol and hydroquinone. Electrochim Acta 85:295–301

    Article  CAS  Google Scholar 

  16. Shaikh A, Saha S, Bakshi P, Hussain A, Ahammad AS (2013) Poly(brilliant cresyl blue)-modified electrode for highly sensitive and simultaneous determination of hydroquinone and catechol. J Electrochem Soc 160(4):B37–B42

    Article  CAS  Google Scholar 

  17. Huang X, Li Y, Chen Y, Wang L (2008) Electrochemical determination of nitrite and iodate by use of gold nanoparticles/poly(3-methylthiophene) composites coated glassy carbon electrode. Sens Actuators B 134(2):780–786

    Article  CAS  Google Scholar 

  18. Ba X, Luo L, Ding Y, Liu X (2013) Determination of tryptophan in the presence of ascorbic acid and dopamine using poly(sulfosalicylic acid) modified glassy carbon electrode. Sens Actuators B 187:27–32

    Article  CAS  Google Scholar 

  19. Zhang X, Gu S et al (2014) Simultaneous detection of roxithromycin and dopamine using a sensor platform based on poly (sulfosalicylic acid) and its application in human serum studies. Anal Methods 6(10):3316–3321

    Article  CAS  Google Scholar 

  20. Feng LJ, Zhang XH et al (2011) An electrochemical sensor based on single-stranded DNA–poly(sulfosalicylic acid) composite film for simultaneous determination of adenine, guanine, and thymine. Anal Biochem 419(2):71–75

    Article  CAS  Google Scholar 

  21. Li J, Chen J et al (2011) Determination of dopamine with improved sensitivity by exploiting an accumulation effect at a nano-gold electrode modified with poly(sulfosalicylic acid). Microchim Acta 174(3–4):345–352

    Article  CAS  Google Scholar 

  22. Li J, Kuang D, Feng Y, Zhang F, Xu Z, Liu M, Wang D (2012) Green synthesis of silver nanoparticles-graphene oxide nanocomposite and its application in electrochemical sensing of tryptophan. Biosens Bioelectron 42:198–206

    Article  Google Scholar 

  23. Liu S, Ou J, Wang J, Liu X, Yang S (2011) A simple two-step electrochemical synthesis of graphene sheets film on the ITO electrode as supercapacitors. J Appl Electrochem 41(7):881–884

    Article  CAS  Google Scholar 

  24. Kim YR, Bong S, Kang YJ, Yang Y, Mahajan RK, Kim JS, Kim H (2010) Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes. Biosens Bioelectron 25(10):2366–2369

    Article  CAS  Google Scholar 

  25. Li F, Li J, Feng Y, Yang L, Du Z (2011) Electrochemical behavior of graphene doped carbon paste electrode and its application for sensitive determination of ascorbic acid. Sens Actuators B 157(1):110–114

    Article  CAS  Google Scholar 

  26. Fang Y, Guo S, Zhu C, Zhai Y, Wang E (2010) Self-assembly of cationic polyelectrolyte-functionalized graphene nanosheets and gold nanoparticles: a two-dimensional heterostructure for hydrogen peroxide sensing. Langmuir 26(13):11277–11282

    Article  CAS  Google Scholar 

  27. Kim SK, Kim D, Jeon S (2012) Electrochemical determination of serotonin on glassy carbon electrode modified with various graphene nanomaterials. Sens Actuators B 174:285–291

    Article  CAS  Google Scholar 

  28. Ge S, Yan M, Lu J, Zhang M, Yu F, Yu J, Song X, Yu S (2012) Electrochemical biosensor based on graphene oxide–Au nanoclusters composites for l-cysteine analysis. Biosens Bioelectron 31(1):49–54

    Article  CAS  Google Scholar 

  29. Cui F, Zhang X (2012) Electrochemical sensor for epinephrine based on a glassy carbon electrode modified with graphene/gold nanocomposites. J Electroanal Chem 669:35–41

    Article  CAS  Google Scholar 

  30. Xu M, Zhu J, Su H, Dong J, Ai S, Li R (2012) Electrochemical determination of methyl parathion using poly(malachite green)/graphene nanosheets–nafion composite film-modified glassy carbon electrode. J Appl Electrochem 42(7):509–51627

    Article  CAS  Google Scholar 

  31. Radoi A, Obreja AC, Eremia SA, Bragaru A, Dinescu A, Radu GL (2013) l-Lactic acid biosensor based on multi-layered graphene. J Appl Electrochem 43(10):985–994

    Article  CAS  Google Scholar 

  32. Wang Q, Kaminska I, Niedziolka Jonsson J, Opallo M, Li M, Boukherroub R, Szunerits S (2013) Sensitive sugar detection using 4-aminophenylboronic acid modified graphene. Biosens Bioelectron 50(0956–5663):331–337

    Article  CAS  Google Scholar 

  33. Xu Y, Bai H, Lu G, Li C, Shi G (2008) Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc 130(18):5856–5857

    Article  CAS  Google Scholar 

  34. Yu Y, Chen Z, Zhang B, Li X, Pan J (2013) Selective and sensitive determination of uric acid in the presence of ascorbic acid and dopamine by PDDA functionalized graphene/graphite composite electrode. Talanta 112:31–36

    Article  CAS  Google Scholar 

  35. Fang Y, Guo S, Zhu C, Zhai Y, Wang E (2010) Self-assembly of cationic polyelectrolyte-functionalized graphene nanosheets and gold nanoparticles: a two-dimensional heterostructure for hydrogen peroxide sensing. Langmuir 26(13):11277–11282

    Article  CAS  Google Scholar 

  36. Huang X, Li Z, Zhang X, He X, Lin S (2013) Preparation of Pt/{PDDA-GN/PSS-GN}n multilayer films and their electrocatalytic activity regarding methanol oxidation. J Colloid Interface Sci 393:300–305

    Article  CAS  Google Scholar 

  37. Zhao H, Zhang Y, Yuan Z (2001) Study on the electrochemical behavior of dopamine with poly(sulfosalicylic acid) modified glassy carbon electrode. Anal Chim Acta 441(1):117–122

    Article  CAS  Google Scholar 

  38. Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339

    Article  CAS  Google Scholar 

  39. Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53:1126

    CAS  Google Scholar 

  40. Zhao DM, Zhang XH, Feng LJ, Jia L, Wang SF (2009) Simultaneous determination of hydroquinone and catechol at PASA/MWNTs composite film modified glassy carbon electrode. Colloids Surf B 74(1):317–321

    Article  CAS  Google Scholar 

  41. Kalimuthu P, John SA (2009) Nanostructured electropolymerized film of 5-amino-2-mercapto-1, 3, 4-thiadiazole on glassy carbon electrode for the selective determination of l-cysteine. Electrochem Commun 11(2):367–370

    Article  CAS  Google Scholar 

  42. Tehrani R, Ghadimi H, Ghani SA (2012) Electrochemical studies of two diphenols isomers at graphene nanosheet–poly(4-vinyl pyridine) composite modified electrode. Sens Actuators B 177:612–619

    Article  Google Scholar 

  43. Gan T, Sun J, Huang K, Song L, Li Y (2012) A graphene oxide–mesoporous MnO2 nanocomposite modified glassy carbon electrode as a novel and efficient voltammetric sensor for simultaneous determination of hydroquinone and catechol. Sens Actuators B 177:412–418

    Article  Google Scholar 

  44. Liu W, Li C, Tang L, Tong A, Gu Y, Cai R, Zhang L, Zhang Z (2013) Nanopore array derived from l-cysteine oxide/gold hybrids: enhanced sensing platform for hydroquinone and catechol determination. Electrochim Acta 88:15–23

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 21375045) and Natural Science Foundation of Jilin Province (No. 20130101118JC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiquan Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 536 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Liu, W., Gu, Y. et al. Simultaneous determination of catechol and hydroquinone based on poly(sulfosalicylic acid)/functionalized graphene modified electrode. J Appl Electrochem 44, 1059–1067 (2014). https://doi.org/10.1007/s10800-014-0713-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-014-0713-z

Keywords

Navigation