Journal of Applied Electrochemistry

, Volume 44, Issue 8, pp 963–976 | Cite as

Improved electro-assisted removal of phosphates and nitrates using mesoporous carbon aerogels with controlled porosity

  • C. Macías
  • P. Lavela
  • G. Rasines
  • M. C. Zafra
  • J. L. Tirado
  • C. O. Ania
Research Article
Part of the following topical collections:
  1. Remediation


Three-activated carbon aerogels were synthesized by CO2 activation of the materials prepared by the polycondensation of resorcinol and formaldehyde mixtures followed by supercritical drying. The obtained carbon aerogels were characterized and used as electrode materials for the electrosorption of sodium phosphate and nitrate. X-ray diffraction and Raman spectroscopy showed the dependence of the structural ordering of the aerogels with the resorcinol/catalyst ratio and the extent of activation. The electrosorption capacitance evaluated by cyclic voltammetry revealed large values for the activated samples containing a large contribution of mesopores, regardless the electrolyte salt. Due to an adequate combination of chemical and porous features, the desalting capacity of the activated carbon aerogel electrodes exceeded that of the as-prepared materials. The evaluation of the kinetic properties by chronocoulometric relaxation and impedance spectroscopy showed a decrease of time constant and resistances for highly mesoporous activated samples. A high deionization capacity and fast electrode discharge was detected for the deionization of sodium nitrate on the highly mesoporous activated aerogel. Data also showed the efficient electrosorption of ionic species on consecutive charge/discharge cycles, confirming the stability of the aerogel electrodes at the high applied potentials.


Carbon aerogel Electrosorption Voltammetry Impedance spectroscopy 



The authors are indebted to the MICINN (Contract IPT-2011-1450-310000 (ADECAR), and CTM2011/23378) for the financial support. We also thank the fruitful collaboration of Isolux Ingeniería, S.A., Fundación Imdea Energia and Proingesa.

Supplementary material

10800_2014_705_MOESM1_ESM.docx (46 kb)
Supplementary material 1 (DOC 47 kb)


  1. 1.
    Porada S, Zhao R, van der Wal A, Presser V, Biesheuvel PM (2013) Review on the science and technology of water desalination by capacitive deionization. Prog Mater Sci 58:1388–1442CrossRefGoogle Scholar
  2. 2.
    Candelaria SL, Shao Y, Zhou W, Li X, Xiao J, Zhang JG, Wang Y, Liu J, Li J, Cao G (2012) Nanostructured carbon for energy storage and conversion. Nano Energy 1:195–220CrossRefGoogle Scholar
  3. 3.
    Oren Y (2008) Review on the science and technology of water desalination by capacitive deionization. Desalination 228:10–29CrossRefGoogle Scholar
  4. 4.
    Marsh H, Rodríguez-Reinoso F (2006) Activated carbon. Elsevier, AmsterdamGoogle Scholar
  5. 5.
    Anderson MA, Cudero AL, Palma J (2010) Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: will it compete? Electrochim Acta 55:3845–3856CrossRefGoogle Scholar
  6. 6.
    Dehkhoda AM, Ellis N, Gyenge E (2014) Electrosorption on activated biochar: effect of thermo-chemical activation treatment on the electric double layer capacitance. J Appl Electrochem 44:141–157CrossRefGoogle Scholar
  7. 7.
    Peng Z, Zhang D, Shi L, Yan T, Yuan S, Li H, Gao R, Fang J (2011) Comparative electroadsorption study of mesoporous carbon electrodes with various pore structures. J Phys Chem C 115:17068–17076CrossRefGoogle Scholar
  8. 8.
    Ania CO, Pernak J, Stefaniak F, Raymundo-Pinero E, Beguin F (2009) Polarization-induced distortion of ions in the pores of carbon electrodes for electrochemical capacitors. Carbon 47:3158–3166CrossRefGoogle Scholar
  9. 9.
    Chmiola J, Largeot C, Taberna PL, Simon P, Gogotsi Y (2008) Desolvation of ions in subnanometer pores and its effect on capacitance and double layer theory. Angew Chem 47:1–5CrossRefGoogle Scholar
  10. 10.
    Zhang D, Yan T, Shi L, Peng Z, Wen X, Zhang J (2012) Enhanced capacitive deionization performance of graphene/carbon nanotube composites. J Mater Chem 22:14696–14704CrossRefGoogle Scholar
  11. 11.
    Liang P, Yuan L, Yang X, Zhou S, Huang X (2013) Coupling ion-exchangers with inexpensive activated carbon fiber electrodes to enhance the performance of capacitive deionization cells for domestic wastewater desalination. Water Res 47:2523–2530CrossRefGoogle Scholar
  12. 12.
    Seo SJ, Jeon H, Lee JK, Kim GY, Park D, Nojima H, Lee J, Moon SH (2010) Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications. Water Res 44:2267–2275CrossRefGoogle Scholar
  13. 13.
    Porada S, Weinstein L, Dash R, van der Wal A, Bryjak M, Gogotsi Y, Biesheuvel PM (2012) Water desalination using capacitive deionization with microporous carbon electrodes. ACS Appl Mater Interfaces 4:1194–1199CrossRefGoogle Scholar
  14. 14.
    Punckt C, Pope MA, Liu J, Lin Y, Aksay IA (2010) Electrochemical performance of graphene as effected by electrode porosity and graphene functionalization electroanalysis. Electroanalysis 22:2834–2841CrossRefGoogle Scholar
  15. 15.
    Ban A, Schafer A, Wendt H (1998) Fundamentals of electrosorption on activated carbon for wastewater treatment of industrial effluents. J Appl Electrochem 157:602–615Google Scholar
  16. 16.
    Tsouris C, Mayes R, Kiggans J, Sharma K, Yiacoumi S, DePaoli D, Dai S (2011) Mesoporous carbon for capacitive deionization of saline water. Environ Sci Technol 45:10243–10249CrossRefGoogle Scholar
  17. 17.
    Xu LY, Shi ZG, Feng YQ (2008) Preparation of a carbon monolith with bimodal perfusion pores. Microporous Mesoporous Mater 115:618–623CrossRefGoogle Scholar
  18. 18.
    Wen X, Zhang D, Yan T, Wang H, Zhang J, Shi L (2013) Three-dimensional graphene-based hierarchically porous carbon composites prepared by a dual-template strategy for capacitive deionization. J Mater Chem A 1:12334–12344CrossRefGoogle Scholar
  19. 19.
    Wang H, Shi L, Yan T, Zhang J, Zhong Q, Zhang D (2014) Design of graphene-coated hollow mesoporous carbon spheres as high performance electrodes for capacitive deionization. J Mater Chem A 2:4739–4750CrossRefGoogle Scholar
  20. 20.
    Pekala RW, Farmer JC, Alviso CT, Tran TD, Mayer ST, Miller JM, Dunn B (1998) Carbon aerogels for electrochemical applications. J Non Cryst Solids 225:74–80CrossRefGoogle Scholar
  21. 21.
    Gross J, Scherer GW, Alviso CT, Pekala RW (1997) Elastic properties of crosslinked resorcinol–formaldehyde gels and aerogels. J Non Cryst Solids 211:132–142CrossRefGoogle Scholar
  22. 22.
    Hadas A, Sagiv B, Haruvy N (1999) Agricultural practices, soil fertility management modes and resultant nitrogen leaching rates under semi-arid conditions. Agric Water Manag 42:81–95CrossRefGoogle Scholar
  23. 23.
    Broséus R, Cigana J, Barbeau B, Daines-Martinez C, Suty H (2009) Removal of total dissolved solids, nitrates and ammonium ions from drinking water using charge-barrier capacitive deionisation. Desalination 249:217–223CrossRefGoogle Scholar
  24. 24.
    Pekala RW (1989) Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci 24:3221–3227CrossRefGoogle Scholar
  25. 25.
    Haro M, Rasines G, Macías C, Ania CO (2011) Stability of a carbon gel electrode when used for the electro-assisted removal of ions from brackish water. Carbon 49:3723–3730CrossRefGoogle Scholar
  26. 26.
    Rouquerol F, Rouquerol J, Sing K (1999) Adsorption by powders and porous solids. Academic Press, LondonGoogle Scholar
  27. 27.
    Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53:1126–1130CrossRefGoogle Scholar
  28. 28.
    Cuesta A, Dhamelincourt P, Laureyns J, Martinez-Alonso A, Tascon JMD (1994) Raman microprobe studies on carbon materials. Carbon 32:1523–1532CrossRefGoogle Scholar
  29. 29.
    Jawhari T, Roid A, Casado J (1995) Raman spectroscopic characterization of some commercially available carbon black materials. Carbon 33:1561–1565CrossRefGoogle Scholar
  30. 30.
    Sze SK, Siddique N, Sloan JJ, Escribano R (2001) Raman spectroscopic characterisation of carbonaceous aerosol. Atmos Environ 35:561–568CrossRefGoogle Scholar
  31. 31.
    Dresselhaus MS, Dresselhaus G (1982) Light-scattering in graphite-intercalation compounds. Springer, BerlinGoogle Scholar
  32. 32.
    Rouzaud JN, Oberlin A, Beny-Bassez C (1983) Carbon-films-structure and microtexture (optical and electron-microscopy, raman-spectroscopy). Thin Solid Films 105:75–96CrossRefGoogle Scholar
  33. 33.
    Dippel B, Jander H, Heintzenberg J (1999) NIR FT Raman spectroscopic study of flame soot. Phys Chem Chem Phys 1:4707–4712CrossRefGoogle Scholar
  34. 34.
    Biniak S, Szymanski G, Siedlewski J, Swiatkowski A (1997) The characterization of activated carbons with oxygen and nitrogen surface groups. Carbon 35:1799–1810CrossRefGoogle Scholar
  35. 35.
    Oh HJ, Lee JH, Ahn H-J, Jeong Y, Kim YJ, Chi CS (2006) Nanoporous activated carbon cloth for capacitive deionization of aqueous solution. Thin Solid Films 515:220–225CrossRefGoogle Scholar
  36. 36.
    Tamon H, Ishizaka H, Araki T, Okazaki M (1998) Control of mesoporous structure of organic and carbon aerogels. Carbon 36:1257–1262CrossRefGoogle Scholar
  37. 37.
    Job N, Thery A, Pirard R, Marien J, Kocon L, Rouzaud JN, Beguin F, Pirard JP (2005) Carbon aerogels, cryogels and xerogels: influence of the drying method on the textural properties of porous carbon materials. Carbon 43:2481–2494CrossRefGoogle Scholar
  38. 38.
    Tamon H, Ishizaka H, Mikami M, Okazaki M (1997) Porous structure of organic and carbon aerogels synthesized by sol–gel polycondensation of resorcinol with formaldehyde. Carbon 35:791–796CrossRefGoogle Scholar
  39. 39.
    Peng Z, Zhang D, Yana T, Zhang J, Shi L (2013) Three-dimensional micro/mesoporous carbon composites with carbon nanotube networks for capacitive deionization. Appl Surf Sci 282:965–973CrossRefGoogle Scholar
  40. 40.
    Hsieh CT, Teng H (2002) Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics. Carbon 40:667–674CrossRefGoogle Scholar
  41. 41.
    Pröbstle H, Wiener M, Fricke J (2003) Carbon aerogels for electrochemical double layer capacitors. J Porous Mater 10:213–222CrossRefGoogle Scholar
  42. 42.
    Huang W, Zhang Y, Bao S, Cruz R, Song S (2014) Desalination by capacitive deionization process using nitric acid-modified activated carbon as the electrodes. Desalination 340:67–72CrossRefGoogle Scholar
  43. 43.
    Wen X, Zhang D, Shi L, Yan T, Wang H, Zhang J (2012) Three-dimensional hierarchical porous carbon with a bimodal pore arrangement for capacitive deionization. J Mater Chem 22:23835–23844CrossRefGoogle Scholar
  44. 44.
    Peng Z, Zhang D, Shi L, Yan T (2012) High performance ordered mesoporous carbon/carbon nanotube composite electrodes for capacitive deionization. J Mater Chem 22:6603–6612CrossRefGoogle Scholar
  45. 45.
    Noked M, Avraham E, Soffer A, Aurbach D (2009) The rate-determining step of electroadsorption processes into nanoporous carbon electrodes related to water desalination. J Phys Chem C 113:21319–21327CrossRefGoogle Scholar
  46. 46.
    Miller JM, Dunn B (1999) Morphology and electrochemistry of ruthenium/carbon aerogel nanostructures. Langmuir 15:799–806CrossRefGoogle Scholar
  47. 47.
    Zafra MC, Lavela P, Macías C, Rasines G, Tirado JL (2013) Electrosorption of environmental concerning anions on a highly porous carbon aerogel. J Electroanal Chem 708:80–86CrossRefGoogle Scholar
  48. 48.
    Yang J, Zou L (2014) Using recyclable calcium citrate templates to prepare mesoporous carbons as electrodes for capacitive deionization. Microporous Mesoporous Mater 183:91–98CrossRefGoogle Scholar
  49. 49.
    Afkhami A (2003) Adsorption and electrosorption of nitrate and nitrite on high-area carbon cloth: an approach to purification of water and waste-water samples. Carbon 41:1309–1328CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • C. Macías
    • 1
  • P. Lavela
    • 2
  • G. Rasines
    • 1
  • M. C. Zafra
    • 2
  • J. L. Tirado
    • 2
  • C. O. Ania
    • 3
  1. 1.Nanoquimia S.LCórdobaSpain
  2. 2.Laboratorio de Química InorgánicaUniversidad de CórdobaCórdobaSpain
  3. 3.Instituto Nacional del Carbón (INCAR, CSIC)OviedoSpain

Personalised recommendations