Skip to main content
Log in

Oxygen consumption upon electrochemically polarised zinc

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A Pt microelectrode was used to measure the oxygen consumption by redox reduction (ORR) on electrochemically polarised zinc in the redox competition mode. Zinc was polarised in the active and passive state, using a pH 7 and pH 13 solution, respectively. At pH 7, the oxygen concentration measured at a distance of 50 μm from the zinc surface, using the Pt microelectrode, is 15–60 % of the bulk oxygen concentration. Therefore, correspondingly, the oxygen consumption by zinc (due to ORR) is 40–85 % of the bulk oxygen concentration. At pH 13, where zinc undergoes passivation, the oxygen consumption by zinc is 70–80 % of the bulk oxygen concentration. The ORR rate on the surface of zinc passive films (ZnO/Zn(OH)2) is thus significant when compared to that on bare/actively corroding zinc. The influence of the electrode kinetics of zinc corrosion, on oxygen diffusion towards the metal surface has been investigated in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Oldham KB, Myland JC (1994) Fundamentals of electrochemical science. Academic Press Inc., San Diego

    Google Scholar 

  2. Boto KG, Williams LFG (1977) Rotating disc electrode studies of zinc corrosion. J Electroanal Chem Interfacial Chem 77:1–20

    Article  CAS  Google Scholar 

  3. Wroblowa HS, Qaderi SB (1990) The mechanism of oxygen reduction on zinc. J Electroanal Chem Interfacial Electrochem 26:153–161

    Article  Google Scholar 

  4. Zs Pilbath, Sziraki L (2008) The electrochemical reduction of oxygen on zinc corrosion films in alkaline solutions. Electrochim Acta 53:3218–3230

    Article  Google Scholar 

  5. Yadav AP, Nishikata A, Tsuru T (2005) Oxygen reduction mechanism on corroded zinc. J Electroanal Chem 585:142–149

    Article  CAS  Google Scholar 

  6. Dafydd H, Worsley DA, McMurray HN (2005) The kinetics and mechanism of cathodic oxygen reduction on zinc and zinc-aluminium alloy galvanised coatings. Corros Sci 47:3006–3018

    Article  CAS  Google Scholar 

  7. Goux A, Pauporte T, Lincot D (2006) Oxygen reduction reaction on electrodeposited zinc oxide electrodes in KC1 solution at 70 °C. Electrochim Acta 51:3168–3172

    Article  CAS  Google Scholar 

  8. Thomas S, Cole IS, Sridhar M, Birbilis N (2013) Revisiting zinc passivation in alkaline solutions. Electrochim Acta 97:192–201

    Article  CAS  Google Scholar 

  9. Stratmann M, Streckel H (1990) On the atmospheric corrosion of metals which are covered with thin electrolyte layers. I. Verification of the experimental technique. Corros Sci 30:681–696

    Article  CAS  Google Scholar 

  10. Stratmann M, Streckel H (1990) On the atmospheric corrosion of metals which are covered with thin electrolyte layers. II. Experimental results. Corros Sci 30:697–714

    Article  CAS  Google Scholar 

  11. Venkatraman MS, Cole IS, Emmanuel B (2011) Corrosion under a porous layer: a porous electrode model and its implications for self-repair. Electrochim Acta 56:8192–8203

    Article  CAS  Google Scholar 

  12. Macdonald DD, Ismail KM, Sikora EJ (1998) Characterization of the passive state on zinc. J Electrochem Soc 145:3141–3149

    Article  CAS  Google Scholar 

  13. Macdonald DD (2011) The history of the point defect model for the passive state: a brief review of film growth aspects. Electrochim Acta 56:1761

    Article  CAS  Google Scholar 

  14. Thomas S, Cole IS, Birbilis N (2012) Compact oxides formed on zinc during exposure to a single sea-water droplet. J Electrochem Soc 160:C59–C63

    Article  Google Scholar 

  15. Dubuisson E, Lavie P, Dalard F, Caire J, Szunerits S (2006) Study of the atmospheric corrosion of galvanised steel in a micrometric electrolytic droplet. Electrochem Commun 8:911–915

    Article  CAS  Google Scholar 

  16. Nishikata A, Ichihara V, Hayashi V, Tsuru T (1997) Influence of electrolyte layer thickness and pH on the initial stage of the atmospheric corrosion of iron. J Electrochem Soc 144:1244–1251

    Article  CAS  Google Scholar 

  17. Cheng YL, Zhang Z, Cao FH, Li JF, Zhang JQ, Wang JM, Cao CN (2004) A study of the corrosion of aluminum alloy 2024-T3 under thin electrolyte layers. Corros Sci 46:1649–1667

    Article  CAS  Google Scholar 

  18. Flitt HJ, Schweinsberg DP (2010) Synthesis, matching and deconstruction of polarization curves for the active corrosion of zinc in aerated near-neutral NaCl solutions. Corros Sci 52:1905–1914

    Article  CAS  Google Scholar 

  19. Venkatraman MS, Cole IS, Emmanuel B (2011) Model for corrosion of metals covered with thin electrolyte layers: pseudo-steady state diffusion of oxygen. Electrochim Acta 56:7171–7179

    Article  CAS  Google Scholar 

  20. Cole IS, Muster TH, Lau D, Wright N, Azmat NS (2010) Products formed during the interaction of seawater droplets with zinc surfaces. II. Results from short exposures. J Electrochem Soc 157:C213–C222

    Article  CAS  Google Scholar 

  21. Cole IS, Muster TH, Furman SA, Wright N, Bradbury A (2008) Products formed during the interaction of seawater droplets with zinc surfaces. I. Results from 1- and 2.5-day exposures. J Electrochem Soc 155:C244–C255

    Article  CAS  Google Scholar 

  22. Thomas S, Birbilis N, Venkatraman MS, Cole IS (2013) Self-Repairing oxides to protect zinc: review, discussion and prospects. Corros Sci 69:11–22

    Article  CAS  Google Scholar 

  23. Lasia A (1999) Electrochemical impedance spectroscopy and its applications. Modern aspects of electrochemistry, Kluwer Academic/Plenum, New York, vol. 32:143–248

  24. Pourbaix M (1974) Atlas of electrochemical equilibria in aqueous solutions, 2nd edn. National Association of Corrosion Engineers, Houston

    Google Scholar 

  25. Wagner C, Traud W (2006) On the interpretation of corrosion processes through the superposition of electrochemical partial processes and on the potential of mixed electrodes. Corrosion 62:844–856

    Article  CAS  Google Scholar 

  26. Andersen TN, Ghandehari MH, Eyring H (1975) A limitation to the mixed potential concept: copper in oxygenated sulfuric acid solutions. J Electrochem Soc 122:1580–1585

    Article  CAS  Google Scholar 

  27. Atrens A, Dietzel W (2007) The negative difference effect and unipositive Mg+. Adv Eng Mater 9:292–297

    Article  CAS  Google Scholar 

  28. Frankel GS (1990) Growth of 2D pits in thin film aluminium. Corros Sci 30:1203–1218

    Article  CAS  Google Scholar 

  29. Kirkland NT, Williams G, Birbilis N (2012) Observations of the galvanostatic dissolution of pure magnesium. Corros Sci 65:5–9

    Article  CAS  Google Scholar 

  30. Frankel GS, Samaniego A, Birbilis N (2003) Evolution of hydrogen at dissolving magnesium surfaces. Corros Sci 70:104–111

    Article  Google Scholar 

  31. Fernandez JL, Bard AJ (2003) Scanning electrochemical microscopy. 47. Imaging electrocatalytic activity for oxygen Reduction in an acidic medium by the tip generation-substrate collection mode. Anal Chem 75:2967–2974

    Article  CAS  Google Scholar 

  32. Eckhard K, Schuhmann W (2007) Localised visualisation of O2 consumption and H2O2 formation by means of SECM for the characterisation of fuel cell catalyst activity. Electrochim Acta 53:1164–1169

    Article  CAS  Google Scholar 

  33. Nagaiah TC, Maljusch A, Chen X, Bron M, Schuhmann W (2009) Visualization of the local catalytic activity of electrodeposited Pt–Ag Catalysts for oxygen reduction by means of SECM. ChemPhysChem 10:2711–2718

    Article  CAS  Google Scholar 

  34. Simoes AM, Bastos AC, Ferreira MG, Gonzalez-Garcia Y, Gonzalez S, Souto RM (2007) Use of SVET and SECM to study the galvanic corrosion of an iron–zinc cell. Corros Sci 49:726–739

    Article  CAS  Google Scholar 

  35. Gonzalez-Garcia Y, Mol JMC, Muselle T, De Graeve I, Van Assche G, Scheltjens G, Van Mele B, Terryn H (2011) SECM study of defect repair in self-healing polymer coatings on metals. Electrochem Commun 13:169–173

    Article  CAS  Google Scholar 

  36. Bastos AC, Simoes AM, Gonzalez S, Gonzalez-Garcia Y, Souto RM (2005) Application of the scanning electrochemical microscope to the examination of organic coatings on metallic substrates. Prog Org Coat 53:177–182

    Article  CAS  Google Scholar 

  37. Gilbert JL, Zarka L, Chang E, Thomas CH (1998) The reduction half cell in biomaterials corrosion: oxygen diffusion profiles near and cell response to polarized titanium surfaces. J Biomed Mater Res 42:321–330

    Article  CAS  Google Scholar 

  38. Thomas S, Birbilis N, Venkatraman MS, Cole IS (2012) Corrosion of zinc as a function of pH. Corrosion 68:015009

    Article  Google Scholar 

  39. Muster TH, Ganther WD, Cole IS (2007) The influence of microstructure on surface phenomena: rolled zinc. Corros Sci 49:2037–2058

    Article  CAS  Google Scholar 

  40. Snook GA, Duffy NW, Pandolfo AG (2008) Detection of oxygen evolution from nickel hydroxide electrodes using scanning electrochemical microscopy. J Electrochem Soc 155:A262–A267

    Article  CAS  Google Scholar 

  41. Mokaddem M, Volovitch P, Ogle K (2010) The anodic dissolution of zinc and zinc alloys in alkaline solution. I. Oxide formation on electrogalvanised steel. Electrochim Acta 55:7867–7875

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Australian Research Council and the CSIRO for their financial support. Sebastian Thomas is grateful to the Department of Material Science and Engineering (MSE) of the Delft University of Technology (The Netherlands) and to the office of the Monash University International Graduate Research (MIGR) for accommodating his travel study. Lisa Rossrucker (Max Planck Institute, Germany) is also sincerely thanked for her helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Thomas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, S., Cole, I.S., Gonzalez-Garcia, Y. et al. Oxygen consumption upon electrochemically polarised zinc. J Appl Electrochem 44, 747–757 (2014). https://doi.org/10.1007/s10800-014-0684-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-014-0684-0

Keywords

Navigation