Journal of Applied Electrochemistry

, Volume 44, Issue 5, pp 675–682 | Cite as

Electrochemical study of TiO2 modified with silver nanoparticles upon CO2 reduction

  • Luisa F. Cueto-Gómez
  • Nora A. Garcia-Gómez
  • Hugo A. Mosqueda
  • Eduardo M. Sánchez
Research Article

Abstract

A systematic cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) study on titanium dioxide (TiO2) and silver–TiO2 surfaces was performed in order to decouple electrochemical reduction processes of carbon dioxide in aqueous solutions. CV studies indicate cathodic current increase on Ag–TiO2 compared to bare TiO2 surfaces. An equivalent circuit based on transmission line model was applied in order to adjust EIS data, and a modification of this model was made to account for Ag particle interaction with the electrolyte solution. Electrochemical processes were then decoupled upon applied potential where the role of TiO2 surface states was identified and separated from (a) silver reduction, (b) electronic transport on TiO2, and (c) charge transfer on TiO2 and Ag surfaces. The Ag–electrolyte interface impedance has considerably lower values than the TiO2–electrolyte interface, suggesting that the silver particles may be considered as favorable reaction sites for the electrochemical reduction of water and carbon dioxide.

Keywords

Electrochemical impedance spectroscopy Transmission line model Titanium dioxide Carbon dioxide Electrochemical reduction 

References

  1. 1.
    Kindzierski WB, Small CC, Fang Y, Bari MdA, Hashisho Z (2012) Automotive wastes. Water Environ Res 84:1407–1431. doi:10.2175/106143012X13407275695247 CrossRefGoogle Scholar
  2. 2.
    Davis SJ, Caldeira K, Matthews HD (2010) Future CO2 emissions and climate change from existing energy infrastructure. Science 329:1330–1333. doi:10.1126/science.1188566 CrossRefGoogle Scholar
  3. 3.
    Kumar B, Llorente M, Froehlich J, Dang T, Sathrum A, Kubiak CP (2012) Photochemical and photoelectrochemical reduction of CO2. Annu Rev Phys Chem 63:541–569. doi:10.1146/annurev-physchem-032511-143759 CrossRefGoogle Scholar
  4. 4.
    Omae I (2006) Aspects of carbon dioxide utilization. Catal Today 115:33–52. doi:10.1016/j.cattod.2006.02.024 CrossRefGoogle Scholar
  5. 5.
    Genovese C, Ampelli C, Perathoner S, Centi G (2013) Electrocatalytic conversion of CO2 to liquid fuels using nanocarbon-based electrodes. J Energy Chem 22:202–213. doi:10.1016/S2095-4956(13)60026-1 CrossRefGoogle Scholar
  6. 6.
    Monnier A, Augustynski J, Stalder C (1980) On the electrolytic reduction of carbon dioxide at TiO2 and TiO2–Ru cathodes. J Electroanal Chem Interfacial Electrochem 112:383–385. doi:10.1016/S0022-0728(80)80420-7 CrossRefGoogle Scholar
  7. 7.
    Zhang L, Wang J, Zhang H, Cai W (2010) A novel fabrication of RuO2/TiO2 nanofilms for electrocatalytic reduction of CO2. Acta Chim Sinica 68:590–593Google Scholar
  8. 8.
    Qu J, Zhang X, Wang Y, Xie C (2005) Electrochemical reduction of CO2 on RuO2/TiO2 nanotubes composite modified Pt electrode. Electrochim Acta 50:3576–3580. doi:10.1016/j.electacta.2004.11.061 CrossRefGoogle Scholar
  9. 9.
    Yui T, Tamaki Y, Sekizawa K, Ishitani O (2011) Photocatalytic reduction of CO2: from molecules to semiconductors. Photocatalysis 303:151–184. doi:10.1007/128_2011_139 CrossRefGoogle Scholar
  10. 10.
    Kočí K, Matějů K, Obalová L, Krejčíková S, Lacný Z, Plachá D, Čapek L, Hospodková A, Šolcová O (2010) Effect of silver doping on the TiO2 for photocatalytic reduction of CO2. Appl Catal B 96:239–244. doi:10.1016/j.apcatb.2010.02.030 CrossRefGoogle Scholar
  11. 11.
    de Levie R (1963) On porous electrodes in electrolyte solutions: I. Capacitance effects. Electrochim Acta 8:751–780. doi:10.1016/0013-4686(63)80042-0 CrossRefGoogle Scholar
  12. 12.
    Fabregat-Santiago F, García Belmonte G, Bisquert J, Zaban A, Salvador P (2002) Decoupling of transport, charge storage, and interfacial charge transfer in the nanocrystalline TiO2/electrolyte system by impedance methods. J Phys Chem B 106:334–339. doi:10.1021/jp0119429 CrossRefGoogle Scholar
  13. 13.
    Mora-Seró I, Bisquert J (2003) Fermi level of surface states in TiO2 nanoparticles. Nano Lett 3:945–949. doi:10.1021/nl0342390 CrossRefGoogle Scholar
  14. 14.
    Cueto LF, Sánchez E, Torres-Martinez LM, Hirata GA (2005) On the optical, structural, and morphological properties of ZrO2 and TiO2 dip-coated thin films supported on glass substrates. Mater Charact 55:263–271. doi:10.1016/j.matchar.2005.05.004 CrossRefGoogle Scholar
  15. 15.
    Dávila-Martínez RE, Cueto LF, Sánchez EM (2006) Electrochemical deposition of silver nanoparticles on TiO2/FTO thin films. Surf Sci 600:3427–3435. doi:10.1016/j.susc.2006.06.041 CrossRefGoogle Scholar
  16. 16.
    Lyon LA, Hupp JT (1999) Energetics of the nanocrystalline titanium dioxide/aqueous solution interface: 2009 approximate conduction band edge variations between H0 = −10 and H = +26. J Phys Chem B 103:4623–4628. doi:10.1021/jp9908404 CrossRefGoogle Scholar
  17. 17.
    Augustynski J (1983) Comments on the paper on the electrolytic reduction of carbon dioxide at TiO2 and other titanates by A.H.A. Tinnemans, T.P.M. Koster, D.H.M.W. Thewissen, C.W. De Kreuk and A. Mackor. J Electroanal Chem Interfacial Electrochem 145:457–460. doi:10.1016/S0022-0728(83)80100-4 CrossRefGoogle Scholar
  18. 18.
    Sullivan BP, Krist K, Guard HE (1993) Electrochemical and electrocatalytic reactions of carbon dioxide. Elsevier Science, New YorkGoogle Scholar
  19. 19.
    Bisquert J, García-Belmonte G, Fabregat-Santiago F, Ferriols NS, Bogdanoff P, Pereira EC (2000) Doubling exponent models for the analysis of porous film electrodes by impedance relaxation of TiO2 nanoporous in aqueous solution. J Phys Chem B 104:2287–2298. doi:10.1021/jp993148h CrossRefGoogle Scholar
  20. 20.
    Gimenez S, Dunn HK, Rodenas P, Fabregat-Santiago F, Miralles SG, Barea EM, Trevisan R, Guerrero A, Bisquert J (2012) Carrier density and interfacial kinetics of mesoporous TiO2 in aqueous electrolyte determined by impedance spectroscopy. J Electroanal Chem 668:119–125. doi:10.1016/j.jelechem.2011.12.019 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Luisa F. Cueto-Gómez
    • 1
  • Nora A. Garcia-Gómez
    • 1
  • Hugo A. Mosqueda
    • 1
  • Eduardo M. Sánchez
    • 1
  1. 1.Universidad Autónoma de Nuevo LeónSan Nicolás de los GarzaMexico

Personalised recommendations