Advertisement

Journal of Applied Electrochemistry

, Volume 44, Issue 3, pp 361–381 | Cite as

Electrochemical modelling using electroneutrality equation as a constraint

  • Frédérick GagnonEmail author
  • Donald Ziegler
  • Mario Fafard
Research Article

Abstract

This paper deals with ionic species migration based on classical mass balance equations in conjunction with a charge balance equation and the electroneutrality condition. Two new methods are proposed to apply the electroneutrality condition, avoiding the elimination of one of the conservation equations of chemical species and permitting to explicitly apply boundary conditions on all species. The first method is based on variational principles and the second on a Lagrange multiplier. It is shown that the new methods are analytically equivalent to the more standard method in which one conservation equation is eliminated without any other consideration. The variational method is more complex to implement than the Lagrange multiplier method. The new methods were applied to a multi-ionic problem together with the charge conservation equation without capacitive effects. Different kinds of boundary conditions were applied: Neumann, Dirichlet and a nonlinear case based on Butler–Volmer kinetics. All methods gave the same results for non-complex problems. In the case of complex problems including chemical equilibrium between each ionic species, it was found that more investigations are necessary even for more conventional methods.

Keywords

Electroneutrality Finite element method Lagrange multiplier Electrochemical engineering Variational method 

List of symbols

\( \vec{x} \)

Position (m)

t

Time (s)

L

Domain size (m)

V

Volume (m3)

A

Area (m2)

Γ

Boundary area (m2)

\( c_{i} (\vec{x},t) \)

Concentration of species i (mol m−3)

N

Total number of ionic species

R

Rate of reaction (mol m−3 s−1)

si

Stoichiometric coefficient for species i

Di

Diffusion coefficient of species i (m2 s−1)

\( \vec{J}_{i} \)

Molar flux of species i (mol m−2 s−1)

\( \bar{J}_{i} \)

Boundary molar flux of species i (mol m−2 s−1)

ui

Mobility of ionic species i (J m2 s−1 mol−1)

zi

Charge number of species i

F

Faraday’s constant (C mol−1)

Φ

Solution potential (V)

Φs

Electrode surface potential (V)

U

Equilibrium potential (V)

\( \bar{R} \)

Gas constant (J mol−1 K−1)

T

Temperature (K)

i0

Exchange current density (A m−2)

ηs

Surface overvoltage (V)

αa

Apparent anodic transfer coefficient

αc

Apparent cathodic transfer coefficient

\( \vec{i} \)

Current density (A m−2)

\( \bar{i} \)

Boundary current density (A m−2)

W

Total weighted residual

Wci

Species i conservation equation weighted residual

WΦ

Charge conservation equation weighted residual

λ

Lagrange multiplier

K

Ionic equilibrium constant

Notes

Acknowledgments

The authors gratefully acknowledge the financial support provided by Alcoa Inc. and the Natural Sciences and Engineering Research Council of Canada.

References

  1. 1.
    Newman J, Thomas-Alyea K (2004) Electrochemical systems, 3rd edn. Wiley, New JerseyGoogle Scholar
  2. 2.
    Ludwig K, Speiser B (2007) J Electroanal Chem 608:91CrossRefGoogle Scholar
  3. 3.
    Barak-Shinar D, Rosenfeld M, Abboud S (2004) J Electrochem Soc 151:H261CrossRefGoogle Scholar
  4. 4.
    Jasielec JJ, Filipek R, Szyszkiewicz K, Fausek J, Danielewski M, Lewenstam A (2012) Comput Mater Sci 63:75CrossRefGoogle Scholar
  5. 5.
    Chu KT, Bazant MZ (2006) Phys Rev E 74:011501CrossRefGoogle Scholar
  6. 6.
    Bazant MZ, Thornton K, Ajdari A (2004) Phys Rev A 70:021506Google Scholar
  7. 7.
    Boudreau BP, Meysman FJR, Middelburg JJ (2004) Earth Planet Sci Lett 222:653CrossRefGoogle Scholar
  8. 8.
    Lichtner PC (1985) Geochim Cosmochim Acta 49:779CrossRefGoogle Scholar
  9. 9.
    Cheng DK (1992) Field and wave electromagnetics, 2nd edn. Addison-Wesley, ReadingGoogle Scholar
  10. 10.
    Ellison W, Balana A, Delbos G, Lamkaouchi K, Eymard L, Guillou C, Prigent C (1998) Radio Sci 33:639CrossRefGoogle Scholar
  11. 11.
    Haynes WM (2012) CRC handbook of chemistry and physics, 92nd edn. CRC Press/Taylor and Francis, Boca RatonGoogle Scholar
  12. 12.
    Bastos JPA, Sadowski N (2003) Electromagnetic modeling by finite element methods. Marcel Dekker, New YorkCrossRefGoogle Scholar
  13. 13.
    Haase R (1969) Thermodynamics of irreversible processes. Addison-Wesley, LondonGoogle Scholar
  14. 14.
    Oldham KB, Bond AM (2001) J Electroanal Chem 508:28CrossRefGoogle Scholar
  15. 15.
    Chandrasekaran R, Fuller TF (2011) J Electrochem Soc 158:A859CrossRefGoogle Scholar
  16. 16.
    Andrei P, Zheng JP, Hendrickson M, Plichta EJ (2012) J Electrochem Soc 159:A770CrossRefGoogle Scholar
  17. 17.
    He X, Li N (2000) Comput Phys Commun 129:158CrossRefGoogle Scholar
  18. 18.
    Volgin VM, Davydov AD (2010) Russ J Electrochem 46:1360CrossRefGoogle Scholar
  19. 19.
    Wang C-W, Sastry AM (2007) J Electrochem Soc 154:A1035CrossRefGoogle Scholar
  20. 20.
    Less GB, Seo JH, Han S, Sastry A, Zausch J, Latz A, Schmidt S, Wieser C, Kehrwald D, Fell S (2012) J Electrochem Soc 159:A697CrossRefGoogle Scholar
  21. 21.
    Ganjoo DK, Tezduyar TE (1987) Comput Methods Appl Mech Eng 65:61CrossRefGoogle Scholar
  22. 22.
    Koster T, Peelen W, Larbi J, de Rooij M, Polder R (2010) Mater Corros 61:518CrossRefGoogle Scholar
  23. 23.
    Bauer G, Gravemeier V, Wall WA (2011) Int J Numer Methods Eng 86:1339CrossRefGoogle Scholar
  24. 24.
    Georgiadou M (1997) J Electrochem Soc 144:2732CrossRefGoogle Scholar
  25. 25.
    Bortels L, Deconinck J, Bossche BVD (1996) J Electroanal Chem 404:15CrossRefGoogle Scholar
  26. 26.
    Yang JD, West AC (1997) AIChE J 43:811CrossRefGoogle Scholar
  27. 27.
    Gagnon F (2012) Modélisation par éléments finis du transport électrochimique des espèces ioniques dans une cuve Hall–Héroult. PhD Thesis, Université Laval, Québec, CanadaGoogle Scholar
  28. 28.
    Gagnon F, Ziegler D, Fafard M (2011). Light Metals 537–542Google Scholar
  29. 29.
    Mandin Ph, Cense JM, Georges B, Favre V, Pauporté Th, Fukunaka Y, Lincot D (2007) Electrochim Acta 53:233CrossRefGoogle Scholar
  30. 30.
    Dhatt G, Touzot G, Lefrançois E (2005) Méthode des Éléments Finis. Lavoisier Hermes-Science, ParisGoogle Scholar
  31. 31.
    Zienkiewcz OC, Taylor RL (2000) The finite element method volume 1: the basis, 5th edn. Butterworth-Heinemann, WoburnGoogle Scholar
  32. 32.
    COMSOL 3.5a (2008) Chemical engineering module user’s guideGoogle Scholar
  33. 33.
    Thonstad J et al (2001) Aluminium electrolysis: fundamentals of the Hall–Héroult process, 3rd edn. Aluminium-Verlag, DüsseldorfGoogle Scholar
  34. 34.
    Sørlie M, Øye HA (1994) Cathodes in aluminium electrolysis, 2nd edn. Aluminium-Verlag, DüsseldorfGoogle Scholar
  35. 35.
    Reddy JN (1986) Applied function analysis and variational methods in engineering. McGraw-Hill, New YorkGoogle Scholar
  36. 36.
    Sarkar S, Aquino W (2011) Electrochim Acta 56:8969CrossRefGoogle Scholar
  37. 37.
    Clark NH, Martell AE (1988) Inorg Chem 27:1297CrossRefGoogle Scholar
  38. 38.
    Leaist DG, Hao L (1994) J Chem Soc Faraday Trans 90:133CrossRefGoogle Scholar
  39. 39.
    MacQuarrie KTB, Mayer KU (2005) Earth-Sci Rev 72:189CrossRefGoogle Scholar
  40. 40.
    Steefel CI, Lasaga AC (1994) Am J Sci 294:529CrossRefGoogle Scholar
  41. 41.
    Fortin A (1995) Analyse Numérique pour Ingénieurs. Éditions de l’école polytechnique de Montréal, Montréal, Québec, CanadaGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Frédérick Gagnon
    • 1
    Email author
  • Donald Ziegler
    • 2
  • Mario Fafard
    • 1
  1. 1.Département de génie civil et de génie des eaux, NSERC/Alcoa Industrial Research Chair MACE3 and Aluminium Research Centre, REGALUniversité LavalQuebecCanada
  2. 2.Alcoa Primary MetalsAlcoa Technical CenterAlcoa CenterUSA

Personalised recommendations