Skip to main content
Log in

Enhanced electrochemical performance of sulfur cathode by incorporation of a thin conductive adhesion layer between the current collector and the active material layer

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript


A novel coated current collector has been applied to improve the electrochemical performance of sulfur cathode. The conductive adhesion layer was successfully coated onto an Al foil by a simple slurry-coating method, as examined by scanning electron microscopy. The effect of the conductive adhesion layer on the electrochemical performance of sulfur cathode was investigated by charge–discharge cycle tests, cyclic voltammetry (CV) and electrochemical impedance spectroscopy. The results of electrochemical tests demonstrate that introducing conductive adhesion layer not only increases the rate capacity, but also greatly enhances the cycle performance of sulfur cathode with a specific capacity of 497.5 mAh g−1 after 50 cycles. The remarkable enhancements can be attributed to the reduction in charge transfer resistance. The curves of CV indicate that the sulfur cathode containing conductive adhesion layer displays an improved electrochemical reversibility.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others


  1. Ji XL, Nazar LF (2010) Advances in Li–S batteries. J Mater Chem 20:9821–9826

    Article  CAS  Google Scholar 

  2. Yao ZD, Wei W, Wang JL, Jun Y, Yan NL (2011) Review of sulfur-based cathodes for high performance lithium rechargeable batteries. Acta Phys Chim Sin 27:1005–1016

    CAS  Google Scholar 

  3. Peter B, Stefan F, Laurence H, Jean MT (2012) Li–O2 and Li–S batteries with high energy storage. Nat Mater 11:19–29

    Google Scholar 

  4. Rauh RD, Abraham KM, Pearson GF, Surprenant JK, Brummer SB (1979) A lithium/dissolved sulfur battery with an organic electrolyte. J Electrochem Soc 126:523–527

    Article  CAS  Google Scholar 

  5. Mikhaylik YV, Akridge JR (2004) Polysulfide shuttle study in the Li/S battery system. J Electrochem Soc 151:A1969–A1976

    Article  CAS  Google Scholar 

  6. Barchasz C, Leprêtre JC, Alloin F, Patoux S (2012) New insights into the limiting parameters of the Li/S rechargeable cell. J Power Sources 199:322–330

    Article  CAS  Google Scholar 

  7. He XM, Ren JG, Wang L, Pu WH, Jiang CY, Wan CR (2009) Expansion and shrinkage of the sulfur composite electrode in rechargeable lithium batteries. J Power Sources 190:154–156

    Article  CAS  Google Scholar 

  8. Cheon SE, Ko KS, Cho JH, Kim SW, Chin EY, Kim HT (2003) Rechargeable lithium sulfur battery II rate capability and cycle characteristics. J Electrochem Soc 150:A796–A799

    Article  CAS  Google Scholar 

  9. Xie K, Cao S, Peng XY, Kumar RV, Cheetham AK (2013) Carbon with hierarchical pores from carbonized metal–organic frameworks for lithium sulphur batteries. Chem Commun 49:2192–2194

    Article  CAS  Google Scholar 

  10. Elazari R, Salitra G, Talyosef Y, Grinblat J, Kelley CS, Xiao A, Affinito J, Aurbach D (2010) Morphological and structural studies of composite sulfur electrodes upon cycling by HRTEM, AFM and Raman spectroscopy. J Electrochem Soc 157:A1131–A1138

    Article  CAS  Google Scholar 

  11. Yang Y, Zheng GY, Cui Y (2013) Nanostructured sulfur cathodes. Chem Soc Rev 42:3018–3032

    Article  CAS  Google Scholar 

  12. Wu HC, Lee E, Wu NL (2010) High-temperature carbon-coated aluminum current collector for enhanced power performance of LiFePO4 electrode of Li-ion batteries. Electrochem Commun 12:488–491

    Article  CAS  Google Scholar 

  13. Wu HC, Lee E, Wu NL, Jow TR (2012) Effects of current collectors on power performance of Li4Ti5O12 anode for Li-ion battery. J Power Sources 197:301–304

    Article  CAS  Google Scholar 

  14. Shen WZ, Fan WB (2013) Nitrogen-containing porous carbons: synthesis and application. J Mater Chem A 1:999–1013

    Article  CAS  Google Scholar 

  15. Zhang B, Qin X, Li GR, Gao XP (2010) Enhancement of long stability of sulfur cathode by encapsulating sulfur into microporous of carbon spheres. Energy Environ Sci 3:1531–1537

    Article  CAS  Google Scholar 

  16. Rao M, Geng XY, Li XP, Hu SJ, Li WS (2012) Lithium–sulfur cell with combining carbon nanofibers–sulfur cathode and gel polymer electrolyte. J Power Sources 212:179–185

    Article  CAS  Google Scholar 

  17. Shao J, Li XY, Li Z, Qu QT, Zheng HH (2013) Core–shell sulfur @ polypyrrole composites as high-capacity materials for aqueous rechargeable batteries. Nanoscale 5:1460–1464

    Article  CAS  Google Scholar 

  18. Nicolas B, Ken S, Yu LG, Lars G, Ju E (2013) Hydrothermal carbon-based nanostructured hollow spheres as electrode materials for high-power lithium–sulfur batteries. Phys Chem Chem Phys 15:6080–6087

    Article  CAS  Google Scholar 

  19. Jin J, Wen ZY, Ma GQ, Lu Y, Cui YM, Wu XW (2013) Flexible self-supporting graphene–sulfur paper for lithium sulfur batteries. RSC Adv 3:2558–2560

    Article  CAS  Google Scholar 

  20. Huang JQ, Zhang Q, Zhang SM, Qian WZ, Wei F (2013) Aligned sulfur-coated carbon nanotubes with a polyethylene glycol barrier at one end for use as a high efficiency sulfur cathode. Carbon 58:99–106

    Article  CAS  Google Scholar 

  21. Su YS, Manthiram A (2012) Lithium–sulfur batteries with a microporous carbon paper as a bifunctional interlayer. Nat Commun 3:1166–1172

    Article  Google Scholar 

  22. Lee SM, Oh ES (2013) Performance enhancement of a lithium ion battery by incorporation of a graphene/polyvinylidene fluoride conductive adhesive layer between the current collector and the active material layer. J Power Sources 244:721–725

    Article  CAS  Google Scholar 

  23. Dong K, Wang SP, Zhang HY, Wu JP (2013) Preparation and electrochemical performance of sulfur–alumina cathode material for lithium–sulfur batteries. Mater Res Bull 48:2079–2082

    Article  CAS  Google Scholar 

  24. Shin ES, Kim K, Oh SH, Choa W (2013) Polysulfide dissolution control: the common ion effect. Chem Commun 49:2004–2006

    Article  CAS  Google Scholar 

  25. Tao XY, Chen F, Xia Y, Huang H, Gan YP, Chen XR, Zhang WK (2013) Decoration of sulfur with porous metal nanostructures: an alternative strategy for improving the cyclability of sulfur cathode materials for advanced lithium–sulfur batteries. Chem Commun 49:4513–4515

    Article  CAS  Google Scholar 

  26. Zhang ZA, Bao WZ, Lai YQ, Li J (2012) Water-soluble polyacrylic acid as a binder for sulfur cathode. ECS Electrochem Lett 1:A34–A37

    Article  CAS  Google Scholar 

  27. Deng ZF, Zhang ZA, Lai YQ, Liu J, Li J, Liu YX (2013) Electrochemical impedance spectroscopy study of a lithium/sulfur battery: modeling and analysis of capacity fading. J Electrochem Soc 160:A553–A558

    Article  CAS  Google Scholar 

Download references


The authors thank the Strategic Emerging Industries Program of Shenzhen, China (JCYJ20120618164543322), and the Teacher Research Fund of Central South University (2013JSJJ027) for the financial support provided; we also thank Engineering Research Center of Advanced Battery Materials, the Ministry of Education, China, for the financial support provided.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Zhian Zhang or Yanqing Lai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Zhang, Z., Wang, X. et al. Enhanced electrochemical performance of sulfur cathode by incorporation of a thin conductive adhesion layer between the current collector and the active material layer. J Appl Electrochem 44, 607–611 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: