Advertisement

Journal of Applied Electrochemistry

, Volume 44, Issue 2, pp 263–277 | Cite as

Modification of well-aligned carbon nanotubes with dihexadecyl hydrogen phosphate: application to highly sensitive nanomolar detection of simvastatin

  • H. Fayazfar
  • A. Afshar
  • A. DolatiEmail author
  • M. Ghalkhani
Research Article

Abstract

The first usage of dihexadecyl hydrogen phosphate (DHP)-modified highly oriented multi-walled carbon nanotube (MWCNTs) forests in a sensor configuration was developed to investigate the electrochemical oxidation and determination of simvastatin (SV) in pharmaceutical dosage forms. Synthesis of well-aligned MWCNTs on a conductive Ta substrate by catalytic vapor deposition technique using a common chemical, ethylenediamine, and without being plasma-aided was reported. The electrochemical behavior and oxidation of SV at the aligned MWCNTs/DHP/Ta electrode were discussed in detail through cyclic voltammetry and differential pulse voltammetry. This modified electrode showed considerably higher electrocatalytic activity for SV than bare Ta electrode or entangled MWCNTs powder electrode, due to presence of the alignment and mutual separation of CNTs. Under the optimal conditions, the A-MWCNTs/DHP/Ta-modified electrode showed a wide linear range from 0.01 to 1 μM with a detection limit of 0.01 nM demonstrating promising results for the future usage in clinical applications.

Keywords

Voltammetry Electrochemical oxidation Simvastatin Sensors Multi-walled carbon nanotube 

References

  1. 1.
    Myant NB (1981) The biology of cholesterol and related steroids. Willium Heinemann Medical Books Ltd., LondonGoogle Scholar
  2. 2.
    Fredrickson DS, Levy RI (1972) In: Fredrickson DD, Wyngarden JB (eds) The metabolic basis of inherited disease, McGraw-Hill, New York, pp 545–546Google Scholar
  3. 3.
    Hoffman WF, Alberts AW, Anderson PS, Chen JS, Amith RL, Willard AK (1986) 3-Hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors. 4. Side chain ester derivatives of mevinolin. J Med Chem 29:849–852CrossRefGoogle Scholar
  4. 4.
    Carlucci G, Mazzeo P, Biordi L, Bologna M (1992) Simultaneous determination of simvastatin and its hydroxy acid form in human plasma by high performance liquid chromatography with UV detection. Pharm J Biomed Anal 10:693–697CrossRefGoogle Scholar
  5. 5.
    Jemal M, Ouyang Z, Powell ML (2000) Direct-injection LC–MS–MS method for high-throughput simultaneous quantitation of simvastatin and simvastatin acid in human plasma. J Pharm Biomed Anal 23:323–340CrossRefGoogle Scholar
  6. 6.
    Wang L, Asgharnejad M (2000) Second-derivative UV spectrometric determination of simvastatin in its tablet dosage form. J Pharm Biomed Anal 21:1243–1248CrossRefGoogle Scholar
  7. 7.
    Gaichore RR, Srivastava AK (2012) Multiwalled carbon nanotube-4-tert-butyl calix[6]arene composite electrochemical sensor for clenbuterol hydrochloride determination by means of differential pulse adsorptive stripping voltammetry. J Appl Electrochem 42:979–987CrossRefGoogle Scholar
  8. 8.
    Fei J, WenX Yi L, Ge F, Zhang Y, Huang M, Chen X (2008) Electrochemical determination diethylstilbestrol by a single-walled carbon nanotube/platinum nanoparticle composite film electrode. J Appl Elechtrochem 38:1527–1533CrossRefGoogle Scholar
  9. 9.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  10. 10.
    Peng H, Sun X, Cai F, Chen X, Zhu Y, Liao G, Chen D, Li Q, Lu Y, Zhu Y, Jia Q (2009) Electrochromatic carbon nanotube/polydiacetylene nanocomposite fibres. Nature Nanotechnol 4:738–741CrossRefGoogle Scholar
  11. 11.
    Sun X, Wang W, Qiu L, Guo W, Yu Y, Peng H (2012) Unusual reversible photomechanical actuation in polymer/nanotube composites. Angew Chem Int Ed 51:1–6CrossRefGoogle Scholar
  12. 12.
    Aravinda LS, Nagaraja KK, Nagaraja HS, Udaya Bhat K, Ramachandra BhatB B (2013) Magnetron sputtered MoO3/carbon nanotube composite electrodes for electrochemical supercapacitor. Electrochim Acta 95:119–124CrossRefGoogle Scholar
  13. 13.
    Manjunatha R, Nagaraju DH, Suresh GS, Melo JS, Souza SFD, Venkatesha TV (2011) Direct electrochemistry of cholesterol oxidase on MWCNTs. J Electroanal Chem 651:24–29CrossRefGoogle Scholar
  14. 14.
    Salinas-Torres D, Huerta F, Montilla F, Morallón E (2011) Study of electroactive and electrocatalytic electrodes surfaces of single walled carbon nanotube modified. Electrochim Acta 56:2464–2470CrossRefGoogle Scholar
  15. 15.
    Barisci JN, Wallace GG, Baughman RH (2000) Electrochemical studies of single wall carbon nanotube in aqueous solutions. J Electroanal Chem 488:92–98CrossRefGoogle Scholar
  16. 16.
    Sun X, Chen T, Yang Z, Peng A (2013) The alignment of carbon nanotubes: an effective route to extend their excellent properties to macroscopic scale. Acc Chem Res 46:539–549CrossRefGoogle Scholar
  17. 17.
    Sun X, Zhang Z, Lu X, Guan G, Li H, Peng H (2013) Electric current test paper based on conjugated polymers and aligned carbon nanotubes. Angew Chem Int Ed 52:7776–7780CrossRefGoogle Scholar
  18. 18.
    HondaY HaramotoT, Takeshige M, Shiozaki H, Kitamura T, Ishikawa M (2007) Aligned MWCNT sheet electrodes prepared by transfer methodology providing high-power capacitor performance. Electrochem Solid-State Lett 10:106–110CrossRefGoogle Scholar
  19. 19.
    Zhang WD, Wen Y, Lin SM, Tjiu WC, Xu GQ, Gan LM (2000) Synthesis of vertically aligned carbon nanotubes on metal deposited quartz plates. Carbon 40:1981–1989CrossRefGoogle Scholar
  20. 20.
    Talapatra S, Kar S, Pal SK, Vajtai R, Ci L, Victor P (2006) Growth of aligned nanotubes on bulk metals. Nat Nanotechnol 1:112–116CrossRefGoogle Scholar
  21. 21.
    Hiraoka T, Yamada T, Hata K, Futaba DN, Kurachi H, Uemura S (2006) Synthesis of single- and double-walled carbon nanotube forests on conducting metal foils. J Am Chem Soc 128:13338–13339CrossRefGoogle Scholar
  22. 22.
    Farmer JC, Fix DV, Mack GV, Pekala RW, Poco JF (1996) Capacitive deionization of NaCl and NaNO3 solutions with carbon aerogel electrodes. J Electrochem Soc 143:159–169CrossRefGoogle Scholar
  23. 23.
    Fraczek-Szczypta A, Menaszek E, Syeda TB, Misra A, Alavijeh M, Adu J, Blazewicz S (2012) Effect of MWCNT surface and chemical modification on in vitro cellular response. J Nanopart Res 14:1181–1195CrossRefGoogle Scholar
  24. 24.
    Mawhinney DB, Naumenko V, Kuznetsova A, Yates JT (2000) Infrared spectral evidence for the etching of carbon nanotubes: ozone oxidation at 298 K. J Am Chem Soc 122:2383–2384CrossRefGoogle Scholar
  25. 25.
    Goyanes S, Rubiolo GR, Salazar A, Jimeno A, Corcuera MA, Mondragon I (2007) Carboxylation treatment of multiwalled carbon nanotubes monitored by infrared and ultraviolet spectroscopies and scanning probe microscopy. Diam Relat Mater 16:412–417CrossRefGoogle Scholar
  26. 26.
    Sotiropoulou S, Chaniotakis NA (2003) Carbon nanotube array-based biosensor. Anal Bioanal Chem 375:103–105Google Scholar
  27. 27.
    Britto PJ, Santhanam KSV, Rubio A, Alonso JA, Ajayan PM (1999) Improved charge transfer at carbon nanotube electrodes. Adv Mater 11:154–157CrossRefGoogle Scholar
  28. 28.
    Lee YT, Kim NS, Park J (2003) Temperature-dependent growth of carbon nanotubes by pyrolysis of ferrocene and acetylene in the range between 700 and 1000 °C. Chem Phys Lett 372:853–859CrossRefGoogle Scholar
  29. 29.
    Ni L, Kuroda K, Zhou LP, Kizuka T, Ohta K, Matsuishi K (2006) Kinetic study of carbon nanotube synthesis over Mo/Co/MgO catalysts. Carbon 44:2265–2272CrossRefGoogle Scholar
  30. 30.
    Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53:1126–1130CrossRefGoogle Scholar
  31. 31.
    Chiu PW, Duesberg GS, Dettlaff-Weglikowska U, Roth S (2002) Interconnection of carbon nanotubes by chemical functionalization. App Phys Lett 80:3811–3813CrossRefGoogle Scholar
  32. 32.
    Liu H, Zhang Y, Li R, Sun X, De′silets S, Abou-Rachid H (2010) Structural and morphological control, nitrogen incorporation and stability of aligned nitrogen-doped carbon nanotubes. Carbon 48:1498–1507CrossRefGoogle Scholar
  33. 33.
    Zhao M, Xia Y, Ma Y, Ying M, Liu X, Mei L (2002) Exohedral and endohedral adsorption of nitrogen on the sidewall of single-walled carbon nanotubes. Phys Rev B 66:155403CrossRefGoogle Scholar
  34. 34.
    Reyes–Reyes M, Grobert N, Kamalakaran R, Seeger T, Golberg E, Ruhle M (2004) Efficient encapsulation of gaseous nitrogen inside carbon nanotubes with bamboo-like structure using aerosol thermolysis. Chem Phys Lett 396:167–173CrossRefGoogle Scholar
  35. 35.
    Choi HC, Baes SY, Park J, Seo K, Kim C, Kim B (2004) Experimental and theoretical studies on the structure of N-doped carbon nanotubes: possibility of intercalated molecular N2. Appl Phys Lett 85(23):5742–5744CrossRefGoogle Scholar
  36. 36.
    Kwon JY, Kim HD (2005) Preparation and properties of acid treated multiwalled carbon nanotube/waterborne polyurethane nanocomposites. J Appl Polym Sci 96:595–604CrossRefGoogle Scholar
  37. 37.
    Wang EG (2006) Nitrogen-induced carbon nanobells and their properties. J Mater Res 21(11):2767–2773CrossRefGoogle Scholar
  38. 38.
    Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Nanotube molecular wires as chemical sensors. Science 287:622–625CrossRefGoogle Scholar
  39. 39.
    Friedrich J, Zuzek M, Bencina M, Cimerman A, Strancar A, Rades I (1995) High-performance liquid chromatographic analysis of mevinolin as mevinolinic acid in fermentation broths. J Chromatogr 204:363–367CrossRefGoogle Scholar
  40. 40.
    Nevcidomskyy AH, Csanyi G, Payne C (2003) Chemically active substitutional nitrogen impurity in carbon nanotubes. Phys Rev Lett 91(10):105502CrossRefGoogle Scholar
  41. 41.
    Katz E, Willner I (2004) Biomolecule-functionalized carbon nanotubes: applications in nanobioelectronics. Chem Phys Chem 5:1084–1104CrossRefGoogle Scholar
  42. 42.
    Yue B, Ma YW, Tao HS, Yu LS, Jian GQ, Wang XZ, Wang XS, Lu YN, Hu Z (2008) CNx nanotubes as catalyst support to immobilize platinum nanoparticles for methanol oxidation. J Mater Chem 18:1747–1750CrossRefGoogle Scholar
  43. 43.
    Tu Y, Huang ZP, Wang DZ, Wen JG, Ren ZF (2002) Growth of aligned carbon nanotubes with controlled site density. Appl Phys Lett 80:4018–4020CrossRefGoogle Scholar
  44. 44.
    Morf WE, de Rooij NF (1997) Performance of amperometric sensors based on multiple microelectrode arrays. Sens Actuators B44:538–541CrossRefGoogle Scholar
  45. 45.
    Zhang Z, Wang E (2000) Electrochemical principles and methods. Science Press, Beijing, p 242Google Scholar
  46. 46.
    Zhang H, Hu C, Wu S, Hu S (2005) Enhanced oxidation of simvastatin at a multi-walled carbon nanotubes—dihexadecyl hydrogen phosphate composite modified glassy carbon electrode and the application in deter—mining simvastatin in pharmaceutical dosage forms. Electroanalysis 17:749–754CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • H. Fayazfar
    • 1
  • A. Afshar
    • 1
  • A. Dolati
    • 1
    Email author
  • M. Ghalkhani
    • 2
  1. 1.Materials Science and Engineering DepartmentSharif University of TechnologyTehranIran
  2. 2.Department of Chemistry, Faculty of ScienceShahid Rajaee Teacher Training UniversityLavizan, TehranIran

Personalised recommendations