Skip to main content
Log in

Enhanced capacitance of a NiO electrode prepared in the magnetic field

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The enhancement of the surface alignment by magnetic field had a great theoretical and practical significance in the improvement of electrochemical capacitor. In the present study, the NiO nanowires were synthesized by liquid-phase reduction method, and the electrode was prepared within external magnetic field. The effects of magnetic field on the electrode surface and the electrochemical behavior were investigated. X-ray diffraction and scanning electron microscope studies showed that the applied magnetic field results in an orderly surface structure of the electrode, which induced an effective transfer path for the electrons and ions. Meanwhile, the orderly electrode surface improved the electrochemical capacitance, as well as decreased the internal resistance. It was found on the cyclic voltammetry and galvanostatic charge/discharge measurements that the electrode prepared with the magnetic field displays an increased capacitance (506 F g−1), high power density (135.8 W kg−1) and energy density (17.6 Wh kg−1), and improved cycle stability compared to the electrode without magnetic field. Electrochemical impedance spectroscopy results demonstrated enhanced electrochemical properties for the addition of magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bao LH, Zang JF, Li XD (2011) Nano Lett 11:1215–1220

    Article  CAS  Google Scholar 

  2. Miller JR, Simon P (2008) Sci Mag 321:651–652

    CAS  Google Scholar 

  3. Conway BE (1997) Electrochemical supercapacitor: scientific fundamentals and technological applications. Kluwer Academic/Plenum Publishers, New York, p 3

    Google Scholar 

  4. Wu MS, Wang MJ, Jow JJ (2006) J Power Sour 195:1523–1532

    Google Scholar 

  5. Cao WJ, Zheng JP (2012) J Power Sour 213:180–185

    Article  CAS  Google Scholar 

  6. Lee JW, Ahn T, Kim JH, Ko JM, Jim JD (2011) Electrochim Acta 56:4849–4875

    Article  CAS  Google Scholar 

  7. Yuan CZ, Cao B, Shen LF, Yang SD, Hao L, LuX J, Zhang F, Zhang LJ, Zhang XG (2011) Nanoscale 3:29–545

    Article  Google Scholar 

  8. Jiang H, Ma J, Li CZ (2012) Adv Mater 24:4197–4202

    Article  CAS  Google Scholar 

  9. Hu CC, Chang KH, Lin MC, Wu YT (2006) Nano Lett 6:2690–2695

    Article  CAS  Google Scholar 

  10. Matthew PY, Su D, Nebojsa SM, Teng XW (2012) J Electrochem Soc 159:A1598–A1603

    Article  Google Scholar 

  11. Chen S, Zhu JW, Han QF, Zheng ZJ, Yang Y, Wang X (2009) J Cryst Growth 9:4356–4361

    Article  CAS  Google Scholar 

  12. Hiraoka T, Izadi-Najafabadi A, Yamad AT, Futaba DN, Yasuda S, Tanaike O, Hatori H, Yumura M, Lijima S, Hata K (2010) Adv Mater 20:422–428

    CAS  Google Scholar 

  13. Cui ZM, Xing W, Liu CP, Tian D, Zhang H (2010) J Power Sour 195:1619–1623

    Article  CAS  Google Scholar 

  14. Tarsame S, Sian Reddy GB (2004) Electrochim Acta 49:5223–5226

    Article  Google Scholar 

  15. Mai YJ, Tu JP, Xia XH, Gu CD, Wang XL (2011) J Power Sour 196:6388–6393

    Article  CAS  Google Scholar 

  16. Khomenko V, Raymundo PE, Beguin F (2006) J Power Sour 153:183–190

    Article  CAS  Google Scholar 

  17. Kim YT, Tadai K, Mitani T (2005) J Mater Chem 46:4914–4921

    Article  Google Scholar 

  18. Kong D, Wang JM, Shao HB, Zhang JQ, Cao CN (2011) J Pediatr Adolesc Gynecol 509:5611–5616

    CAS  Google Scholar 

  19. Arthur TS, Bates DJ, Cinigliano N, Johnson DC, Malati P, Mosby JM, Perre E, Rawls MT, Prieto AM, Dunn B (2011) MRS Bull 36:523–531

    Article  CAS  Google Scholar 

  20. Toupin M, Brousse T, Belanger D (2004) Chem Mater 16:3184–3190

    Article  CAS  Google Scholar 

  21. Xu CJ, Kang FY, Li BH, Du HD (2010) J Mater Res 25:1421–1432

    Article  CAS  Google Scholar 

  22. Simon P, Gogotsi Y (2008) Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  23. Shao CL, Guan HY, Wen SB, Chen B, Han DX, Gong J, Yang XH, Liu YC (2004) Chem J Chin Univ 25:1013–1015

    CAS  Google Scholar 

  24. Liang K, Tang XZ, Hu WC (2012) J Mater Chem 22:11062–11607

    Article  CAS  Google Scholar 

  25. Bund A, Koehler S, Kuehnlein HH, Plieth W (2003) Electrochim Acta 49:147–152

    Article  CAS  Google Scholar 

  26. Jiang CX, Wang HY, Wang YZ, Chen XR, Tang YG (2013) J Power Sour 238:257–264

    Article  CAS  Google Scholar 

  27. Yeagar MP, Su D, Marinkovic NS, Teng XW (2012) J Electrochem Soc 159:A1598–A1603

    Article  Google Scholar 

  28. Chigane M, Ishikawa M (1994) J Electrochem Soc 141:3439–3443

    Article  CAS  Google Scholar 

  29. Wang HB, Pan QM, Wang XP, Yin GP, Zhao JW (2009) J Appl Electrochem 39:1597–1602

    Article  CAS  Google Scholar 

  30. Kim JH, Zhu K, Yan YF, Perkins CL (2010) Nano Lett 10:4099–4104

    Article  CAS  Google Scholar 

  31. Olsen E, Thonstad J (1999) J Appl Electrochem 29:301–311

    Article  CAS  Google Scholar 

  32. Wang DC, Ni WB, Pang H, Lu QY, Huang ZJ, Zhao JW (2010) Electrochim Acta 55:6830–6835

    Article  CAS  Google Scholar 

  33. Gamby J, Taberna PL, Simon P, Fauvarque JF, Chesneau M (2010) J Power Sour 101:109–116

    Article  Google Scholar 

  34. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications. Wiley Press, New York, p 106

    Google Scholar 

  35. Zang JF, Bao SJ, Li CM, Bian HJ, Cui XQ, Bao QL, Sun CQ, Guo J, Lian K (2008) J Phys Chem C 112:14843–14847

    Article  CAS  Google Scholar 

  36. Guo YG, Hu JS, Wan LJ (2008) Adv Mater 20:2965–2969

    Article  Google Scholar 

  37. Wu MS, Huang YA, Yang CH (2008) J Electrochem Soc 155:A798–A805

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-feng Xu.

Additional information

Foundation item: Project supported by the National Natural Science Foundation of China (Grant No. 21376034) and the National Basic Research Program of China (973 Program, Grant No. 2012CB215500).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Gx., Cai, J., Xu, Hf. et al. Enhanced capacitance of a NiO electrode prepared in the magnetic field. J Appl Electrochem 44, 391–398 (2014). https://doi.org/10.1007/s10800-013-0653-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-013-0653-z

Keywords

Navigation