Advertisement

Journal of Applied Electrochemistry

, Volume 44, Issue 3, pp 391–398 | Cite as

Enhanced capacitance of a NiO electrode prepared in the magnetic field

  • Guo-xiang Wang
  • Jian Cai
  • Hong-feng XuEmail author
  • Lu Lu
  • Hong Zhao
Research Article

Abstract

The enhancement of the surface alignment by magnetic field had a great theoretical and practical significance in the improvement of electrochemical capacitor. In the present study, the NiO nanowires were synthesized by liquid-phase reduction method, and the electrode was prepared within external magnetic field. The effects of magnetic field on the electrode surface and the electrochemical behavior were investigated. X-ray diffraction and scanning electron microscope studies showed that the applied magnetic field results in an orderly surface structure of the electrode, which induced an effective transfer path for the electrons and ions. Meanwhile, the orderly electrode surface improved the electrochemical capacitance, as well as decreased the internal resistance. It was found on the cyclic voltammetry and galvanostatic charge/discharge measurements that the electrode prepared with the magnetic field displays an increased capacitance (506 F g−1), high power density (135.8 W kg−1) and energy density (17.6 Wh kg−1), and improved cycle stability compared to the electrode without magnetic field. Electrochemical impedance spectroscopy results demonstrated enhanced electrochemical properties for the addition of magnetic field.

Keywords

Nickel oxide Nanowire Magnetic field Supercapacitor 

References

  1. 1.
    Bao LH, Zang JF, Li XD (2011) Nano Lett 11:1215–1220CrossRefGoogle Scholar
  2. 2.
    Miller JR, Simon P (2008) Sci Mag 321:651–652Google Scholar
  3. 3.
    Conway BE (1997) Electrochemical supercapacitor: scientific fundamentals and technological applications. Kluwer Academic/Plenum Publishers, New York, p 3Google Scholar
  4. 4.
    Wu MS, Wang MJ, Jow JJ (2006) J Power Sour 195:1523–1532Google Scholar
  5. 5.
    Cao WJ, Zheng JP (2012) J Power Sour 213:180–185CrossRefGoogle Scholar
  6. 6.
    Lee JW, Ahn T, Kim JH, Ko JM, Jim JD (2011) Electrochim Acta 56:4849–4875CrossRefGoogle Scholar
  7. 7.
    Yuan CZ, Cao B, Shen LF, Yang SD, Hao L, LuX J, Zhang F, Zhang LJ, Zhang XG (2011) Nanoscale 3:29–545CrossRefGoogle Scholar
  8. 8.
    Jiang H, Ma J, Li CZ (2012) Adv Mater 24:4197–4202CrossRefGoogle Scholar
  9. 9.
    Hu CC, Chang KH, Lin MC, Wu YT (2006) Nano Lett 6:2690–2695CrossRefGoogle Scholar
  10. 10.
    Matthew PY, Su D, Nebojsa SM, Teng XW (2012) J Electrochem Soc 159:A1598–A1603CrossRefGoogle Scholar
  11. 11.
    Chen S, Zhu JW, Han QF, Zheng ZJ, Yang Y, Wang X (2009) J Cryst Growth 9:4356–4361CrossRefGoogle Scholar
  12. 12.
    Hiraoka T, Izadi-Najafabadi A, Yamad AT, Futaba DN, Yasuda S, Tanaike O, Hatori H, Yumura M, Lijima S, Hata K (2010) Adv Mater 20:422–428Google Scholar
  13. 13.
    Cui ZM, Xing W, Liu CP, Tian D, Zhang H (2010) J Power Sour 195:1619–1623CrossRefGoogle Scholar
  14. 14.
    Tarsame S, Sian Reddy GB (2004) Electrochim Acta 49:5223–5226CrossRefGoogle Scholar
  15. 15.
    Mai YJ, Tu JP, Xia XH, Gu CD, Wang XL (2011) J Power Sour 196:6388–6393CrossRefGoogle Scholar
  16. 16.
    Khomenko V, Raymundo PE, Beguin F (2006) J Power Sour 153:183–190CrossRefGoogle Scholar
  17. 17.
    Kim YT, Tadai K, Mitani T (2005) J Mater Chem 46:4914–4921CrossRefGoogle Scholar
  18. 18.
    Kong D, Wang JM, Shao HB, Zhang JQ, Cao CN (2011) J Pediatr Adolesc Gynecol 509:5611–5616Google Scholar
  19. 19.
    Arthur TS, Bates DJ, Cinigliano N, Johnson DC, Malati P, Mosby JM, Perre E, Rawls MT, Prieto AM, Dunn B (2011) MRS Bull 36:523–531CrossRefGoogle Scholar
  20. 20.
    Toupin M, Brousse T, Belanger D (2004) Chem Mater 16:3184–3190CrossRefGoogle Scholar
  21. 21.
    Xu CJ, Kang FY, Li BH, Du HD (2010) J Mater Res 25:1421–1432CrossRefGoogle Scholar
  22. 22.
    Simon P, Gogotsi Y (2008) Nat Mater 7:845–854CrossRefGoogle Scholar
  23. 23.
    Shao CL, Guan HY, Wen SB, Chen B, Han DX, Gong J, Yang XH, Liu YC (2004) Chem J Chin Univ 25:1013–1015Google Scholar
  24. 24.
    Liang K, Tang XZ, Hu WC (2012) J Mater Chem 22:11062–11607CrossRefGoogle Scholar
  25. 25.
    Bund A, Koehler S, Kuehnlein HH, Plieth W (2003) Electrochim Acta 49:147–152CrossRefGoogle Scholar
  26. 26.
    Jiang CX, Wang HY, Wang YZ, Chen XR, Tang YG (2013) J Power Sour 238:257–264CrossRefGoogle Scholar
  27. 27.
    Yeagar MP, Su D, Marinkovic NS, Teng XW (2012) J Electrochem Soc 159:A1598–A1603CrossRefGoogle Scholar
  28. 28.
    Chigane M, Ishikawa M (1994) J Electrochem Soc 141:3439–3443CrossRefGoogle Scholar
  29. 29.
    Wang HB, Pan QM, Wang XP, Yin GP, Zhao JW (2009) J Appl Electrochem 39:1597–1602CrossRefGoogle Scholar
  30. 30.
    Kim JH, Zhu K, Yan YF, Perkins CL (2010) Nano Lett 10:4099–4104CrossRefGoogle Scholar
  31. 31.
    Olsen E, Thonstad J (1999) J Appl Electrochem 29:301–311CrossRefGoogle Scholar
  32. 32.
    Wang DC, Ni WB, Pang H, Lu QY, Huang ZJ, Zhao JW (2010) Electrochim Acta 55:6830–6835CrossRefGoogle Scholar
  33. 33.
    Gamby J, Taberna PL, Simon P, Fauvarque JF, Chesneau M (2010) J Power Sour 101:109–116CrossRefGoogle Scholar
  34. 34.
    Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications. Wiley Press, New York, p 106Google Scholar
  35. 35.
    Zang JF, Bao SJ, Li CM, Bian HJ, Cui XQ, Bao QL, Sun CQ, Guo J, Lian K (2008) J Phys Chem C 112:14843–14847CrossRefGoogle Scholar
  36. 36.
    Guo YG, Hu JS, Wan LJ (2008) Adv Mater 20:2965–2969CrossRefGoogle Scholar
  37. 37.
    Wu MS, Huang YA, Yang CH (2008) J Electrochem Soc 155:A798–A805CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Guo-xiang Wang
    • 1
    • 2
  • Jian Cai
    • 3
  • Hong-feng Xu
    • 1
    Email author
  • Lu Lu
    • 1
  • Hong Zhao
    • 1
  1. 1.Liaoning Provincial Key Laboratory of New Energy BatteryDalian Jiaotong UniversityDalianPeople’s Republic of China
  2. 2.Department of Materials and Science and EngineeringDalian Jiaotong UniversityDalianPeople’s Republic of China
  3. 3.School of Electronics and Information EngineeringDalian Jiaotong UniversityDalianPeople’s Republic of China

Personalised recommendations