Journal of Applied Electrochemistry

, Volume 44, Issue 3, pp 411–418 | Cite as

Facile synthesis of robust free-standing TiO2 nanotubular membranes for biofiltration applications

  • Julien Schweicher
  • Tejal A. DesaiEmail author
Research Article


Robust monodisperse nanoporous membranes have a wide range of biotechnological applications, but are often difficult or costly to fabricate. Here, a simple technique is reported to produce free-standing TiO2 nanotubular membranes with through-hole morphology. It consists of a three-step anodization procedure carried out at room temperature on a Ti foil. The first anodization (1 h at 80 V) is used to pattern the surface of the metallic foil. Then, the second anodization (24 h at 80 V) produces the array of TiO2 nanotubes that will constitute the final membrane. A higher voltage anodization (3–5 min at 180 V) is finally applied to detach the TiO2 nanotubular layer from the underlying Ti foil. In order to completely remove the barrier layer that obstructs some pores of the membrane, the latter is etched 2 min in a buffered oxide etch solution. The overall process produces 60-μm-thick TiO2 nanotubular membranes with tube openings of 110 nm on one side and 73 nm on the other side. The through-hole morphology of these membranes has been verified by performing diffusion experiments with glucose, insulin, and immunoglobulin G where in differences in diffusion rate are observed based on molecular weight. Such biocompatible TiO2 nanotubular membranes, with controlled pore size and morphology, have broad biotechnological and biomedical applications.


TiO2 nanotubes Membranes Multi-step anodization Diffusion of biomolecules Biofiltration 



JS and TAD would like to acknowledge financial support from the Juvenile Diabetes Research Foundation. JS is also grateful for a postdoctoral fellowship (2010–2011) from the King Baudouin Foundation (Belgium) and the Belgian American Educational Foundation. All SEM imaging was performed at the Electron Microscope Facility of the San Francisco State University (SFSU).


  1. 1.
    Grimes CA, Mor GK (2009) TiO2 nanotube arrays—synthesis, properties, and applications. Springer, DordrechtGoogle Scholar
  2. 2.
    Roy P, Berger S, Schmuki P (2011) TiO2 nanotubes: synthesis and applications. Angew Chem Int Ed 50(13):2904–2939. doi: 10.1002/anie.201001374 CrossRefGoogle Scholar
  3. 3.
    Kummer KM, Taylor E, Webster TJ (2012) Biological applications of anodized TiO2 nanostructures: a review from orthopedic to stent applications. Nanosci Nanotechnol Lett 4(5):483–493. doi: 10.1166/nnl.2012.1352 CrossRefGoogle Scholar
  4. 4.
    Tan AW, Pingguan-Murphy B, Ahmad R, Akbar SA (2012) Review of titania nanotubes: fabrication and cellular response. Ceram Int 38(6):4421–4435. doi: 10.1016/j.ceramint.2012.03.002 CrossRefGoogle Scholar
  5. 5.
    Ainslie KM, Tao SL, Popat KC, Daniels H, Hardev V, Grimes CA, Desai TA (2009) In vitro inflammatory response of nanostructured titania, silicon oxide, and polycaprolactone. J Biomed Mater Res A 91A(3):647–655. doi: 10.1002/jbm.a.32262 CrossRefGoogle Scholar
  6. 6.
    Oh S-H, Finones RR, Daraio C, Chen L-H, Jin S (2005) Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. Biomaterials 26(24):4938–4943. doi: 10.1016/j.biomaterials.2005.01.048 CrossRefGoogle Scholar
  7. 7.
    Brammer KS, Frandsen CJ, Jin S (2012) TiO2 nanotubes for bone regeneration. Trends Biotechnol 30(6):315–322. doi: 10.1016/j.tibtech.2012.02.005 CrossRefGoogle Scholar
  8. 8.
    Minagar S, Berndt CC, Wang J, Ivanova E, Wen CA (2012) Review of the application of anodization for the fabrication of nanotubes on metal implant surfaces. Acta Biomater 8(8):2875–2888. doi: 10.1016/j.actbio.2012.04.005 CrossRefGoogle Scholar
  9. 9.
    Brammer KS, Oh S, Gallagher JO, Jin S (2008) Enhanced cellular mobility guided by TiO2 nanotube surfaces. Nano Lett 8(3):786–793. doi: 10.1021/nl072572o CrossRefGoogle Scholar
  10. 10.
    Peng L, Eltgroth ML, LaTempa TJ, Grimes CA, Desai TA (2009) The effect of TiO2 nanotubes on endothelial function and smooth muscle proliferation. Biomaterials 30(7):1268–1272. Accessed 14 Oct 2013Google Scholar
  11. 11.
    Peng L, Barczak AJ, Barbeau RA, Xiao Y, LaTempa TJ, Grimes CA, Desai TA (2009) Whole genome expression analysis reveals differential effects of TiO2 nanotubes on vascular cells. Nano Lett 10(1):143–148. doi: 10.1021/nl903043z CrossRefGoogle Scholar
  12. 12.
    Popat KC, Eltgroth M, LaTempa TJ, Grimes CA, Desai TA (2007) Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. Biomaterials 28(32):4880–4888. doi: 10.1016/j.biomaterials.2007.07.037 CrossRefGoogle Scholar
  13. 13.
    Popat KC, Eltgroth M, LaTempa TJ, Grimes CA, Desai TA (2007) Titania nanotubes: a novel platform for drug-eluting coatings for medical implants? Small 3(11):1878–1881. doi: 10.1002/smll.200700412 CrossRefGoogle Scholar
  14. 14.
    Peng L, Mendelsohn AD, LaTempa TJ, Yoriya S, Grimes CA, Desai TA (2009) Long-term small molecule and protein elution from TiO2 nanotubes. Nano Lett 9(5):1932–1936. doi: 10.1021/nl9001052 CrossRefGoogle Scholar
  15. 15.
    Losic D, Simovic S (2009) Self-ordered nanopore and nanotube platforms for drug delivery applications. Expert Opin Drug Deliv 6(12):1363–1381. doi: 10.1517/17425240903300857 CrossRefGoogle Scholar
  16. 16.
    Albu SP, Ghicov A, Macak JM, Hahn R, Schmuki P (2007) Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications. Nano Lett 7(5):1286–1289. doi: 10.1021/nl070264k CrossRefGoogle Scholar
  17. 17.
    Paulose M, Prakasam HE, Varghese OK, Peng L, Popat KC, Mor GK, Desai TA, Grimes CA (2007) TiO2 nanotube arrays of 1000 μm length by anodization of titanium foil: phenol red diffusion. J Phys Chem C 111(41):14992–14997. doi: 10.1021/jp075258r CrossRefGoogle Scholar
  18. 18.
    Paulose M, Peng L, Popat KC, Varghese OK, LaTempa TJ, Bao N, Desai TA, Grimes CA (2008) Fabrication of mechanically robust, large area, polycrystalline nanotubular/porous TiO2 membranes. J Membr Sci 319(1–2):199–205. doi: 10.1016/j.memsci.2008.03.050 CrossRefGoogle Scholar
  19. 19.
    Albu SP, Ghicov A, Berger S, Jha H, Schmuki P (2010) TiO2 nanotube layers: flexible and electrically active flow-through membranes. Electrochem Commun 12(10):1352–1355. doi: 10.1016/j.elecom.2010.07.018 CrossRefGoogle Scholar
  20. 20.
    Roy P, Dey T, Lee K, Kim D, Fabry B, Schmuki P (2010) Size-selective separation of macromolecules by nanochannel titania membrane with self-cleaning (declogging) ability. J Am Chem Soc 132(23):7893–7895. doi: 10.1021/ja102712j CrossRefGoogle Scholar
  21. 21.
    Liu G, Wang K, Hoivik N, Jakobsen H (2012) Progress on free-standing and flow-through TiO2 nanotube membranes. Sol Energy Mater Sol Cells 98:24–38. doi: 10.1016/j.solmat.2011.11.004 CrossRefGoogle Scholar
  22. 22.
    Macak JM, Albu SP, Schmuki P (2007) Towards ideal hexagonal self-ordering of TiO2 nanotubes. Phys Status Solidi 1(5):181–183. doi: 10.1002/pssr.200701148 Google Scholar
  23. 23.
    Zhang G, Huang H, Zhang Y, Chan HLW, Zhou L (2007) Highly ordered nanoporous TiO2 and its photocatalytic properties. Electrochem Commun 9(12):2854–2858. Accessed 14 Oct 2013Google Scholar
  24. 24.
    Ali G, Chen C, Yoo S, Kum J, Cho S (2011) Fabrication of complete titania nanoporous structures via electrochemical anodization of Ti. Nanoscale Res Lett 6(1):332. Accessed 14 Oct 2013
  25. 25.
    Wang D, Liu L (2010) Continuous fabrication of free-standing TiO2 nanotube array membranes with controllable morphology for depositing interdigitated heterojunctions. Chem Mater 22(24):6656–6664. doi: 10.1021/cm102622x CrossRefGoogle Scholar
  26. 26.
    Kant K, Losic D (2009) A simple approach for synthesis of TiO2 nanotubes with through-hole morphology. Phys Status Solidi 3(5):139–141. doi: 10.1002/pssr.200903087 Google Scholar
  27. 27.
    Li S, Zhang G (2010) One-step realization of open-ended TiO2 nanotube arrays by transition of the anodizing voltage. J Ceram Soc Jpn 118(4):291–294. doi: 10.2109/jcersj2.118.291 CrossRefGoogle Scholar
  28. 28.
    Jo Y, Jung I, Lee I, Choi J, Tak Y (2010) Fabrication of through-hole TiO2 nanotubes by potential shock. Electrochem Commun 12(5):616–619. doi: 10.1016/j.elecom.2010.02.013 CrossRefGoogle Scholar
  29. 29.
    Liu G, Hoivik N, Wang K, Jakobsen H (2011) A voltage-dependent investigation on detachment process for free-standing crystalline TiO2 nanotube membranes. J Mater Sci 46(24):7931–7935. doi: 10.1007/s10853-011-5927-4 CrossRefGoogle Scholar
  30. 30.
    Fang D, Huang K, Liu S, Luo Z, Qing X, Zhang Q (2010) High-density NiTiO3/TiO2 nanotubes synthesized through sol-gel method using well-ordered TiO2 membranes as template. J Alloys Compd 498(1):37–41. Accessed 14 Oct 2013Google Scholar
  31. 31.
    Zhu B, Li J, Chen Q, Cao R-G, Li J, Xu D (2010) Artificial, switchable K+-gated ion channels based on flow-through titania-nanotube arrays. Phys Chem Chem Phys 12(34):9989–9992. doi: 10.1039/B925961A CrossRefGoogle Scholar
  32. 32.
    Li L-L, Chen Y-J, Wu H-P, Wang NS, Diau EW-G (2011) Detachment and transfer of ordered TiO2 nanotube arrays for front-illuminated dye-sensitized solar cells. Energy Environ Sci 4(9):3420–3425. doi: 10.1039/C0EE00474J CrossRefGoogle Scholar
  33. 33.
    Pappenheimer JR, Renkin EM, Borrero LM (1951) Filtration, diffusion and molecular sieving through peripheral capillary membranes: a contribution to the pore theory of capillary permeability. Am J Physiol 167(1):13–46. Accessed 14 Oct 2013Google Scholar
  34. 34.
    Oliva A, Fariña J, Llabrés M (2000) Development of two high-performance liquid chromatographic methods for the analysis and characterization of insulin and its degradation products in pharmaceutical preparations. J Chrom B 749(1):25–34. doi: 10.1016/S0378-4347(00)00374-1 CrossRefGoogle Scholar
  35. 35.
    Leoni L, Desai TA (2004) Micromachined biocapsules for cell-based sensing and delivery. Adv Drug Deliv Rev 56(2):211–229. doi: 10.1016/j.addr.2003.08.014 CrossRefGoogle Scholar
  36. 36.
    Kang J, Erdodi G, Kennedy JP (2007) Development of two high-performance liquid chromatographic methods for the analysis and characterization of insulin and its degradation products in pharmaceutical preparations. J Polym Sci A 45(18):4276–4283. doi: 10.1002/pola.22170 CrossRefGoogle Scholar
  37. 37.
    Schweicher J, Nyitray C, Desai TA (2014) Membranes to achieve immunoprotection of transplanted islets. Front Biosci (accepted)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Therapeutic Micro and Nanotechnology Laboratory, Department of Bioengineering and Therapeutic SciencesUniversity of California, San Francisco (UCSF)San FranciscoUSA

Personalised recommendations