Advertisement

Journal of Applied Electrochemistry

, Volume 44, Issue 2, pp 233–243 | Cite as

Electrochemical investigation of Pd nanoparticles and MWCNTs supported Pd nanoparticles-coated electrodes for alcohols (C1–C3) oxidation in fuel cells

  • Meissam NoroozifarEmail author
  • M. Khorasani-Motlagh
  • M.-S. Ekrami-Kakhki
  • R. Khaleghian-Moghadam
Research Article

Abstract

Incorporation of palladium nanoparticles (PdNPs) and multi-walled carbon nanotubes (MWCNTs) into chitosan-coated glassy carbon (GC) electrode for alcohols (methanol, ethanol, and isopropanol) electrooxidation has been studied. PdNPs–chitosan and MWCNTs–PdNPs–chitosan nanocomposites are successfully prepared and characterized by transmission electron microscopy images and UV–Vis spectroscopy. Based on the results, PdNPs–chitosan nanocomposite indicates high electrochemical activity and excellent catalytic characteristic for alcohol (C1–C3) electrooxidation on a GC electrode in an alkaline medium. The current density of the alcohols oxidation at GC–PdNPs–chitosan electrode is investigated in optimized conditions and compared with that obtained at the GC-modified electrode by Pd with different polymers. Also, our results show that the dispersion of Pd nanoparticles on the MWCNTs significantly improved the performance of the PdNPs/chitosan composite for electrooxidation of the C1–C3 alcohols.

Keywords

Palladium Chitosan MWCNTs Nanoparticles Fuel cell Electrocatalyst 

Notes

Acknowledgments

We thank University of Sistan and Baluchestan (USB) for financial support.

References

  1. 1.
    Vigier F, Coutanceau C, Hahn F, Belgsir EM, Lamy C (2004) J Electroanal Chem 563:81–89CrossRefGoogle Scholar
  2. 2.
    Jayashree RS, Spendelow RS, Yeom J, Rastogi J, Shannon MA, Kenis PJA (2005) Electrochim Acta 50:4674–4682CrossRefGoogle Scholar
  3. 3.
    Abdel Rahim MA, Hassan HB, Abdel Hameed RM (2007) Fuel Cells 7:298–305CrossRefGoogle Scholar
  4. 4.
    Benseba F, Farah AA, Wang DS, Bock C, Du XM, Kung J, Page YL, Girishkumar JG, Vinodgopal K, Kamat PV (2005) J Phys Chem B 109:15339–15344CrossRefGoogle Scholar
  5. 5.
    Ekrami-Kakhki MS, Khorasani-Motlagh M, Noroozifar M (2011) J Appl Electrochem 41:527–534CrossRefGoogle Scholar
  6. 6.
    Khorasani-Motlagh M, Noroozifar M, Ekrami-Kakhki MS (2011) Int J Hydrogen Energy 36:11554–11563CrossRefGoogle Scholar
  7. 7.
    Xu MW, Gao GY, Zhou WJ, Zhang KF, Li HL (2008) J Power Sources 175:217–220CrossRefGoogle Scholar
  8. 8.
    Hu FP, Cui GF, Wei ZD, Shen PK (2008) Electrochem Commun 10:1303–1306CrossRefGoogle Scholar
  9. 9.
    Bianchini C, Bambagioni V, Filippi J, Marchionni A, Vizza F, Bert P, Tampucci A (2009) Electrochem Commun 11:1077–1080CrossRefGoogle Scholar
  10. 10.
    Liang ZX, Zhao TS, Xu JB, Zhu LD (2009) Electrochim Acta 54:2203–2208CrossRefGoogle Scholar
  11. 11.
    Zhang LL, Lu TH, Bao JC, Tang YW, Li C (2006) Electrochem Commun 8:1625–1627CrossRefGoogle Scholar
  12. 12.
    Ranganathan ES, Bej SK, Thompson LT (2005) Appl Catal A 289:153–162CrossRefGoogle Scholar
  13. 13.
    Wang J, Chen Y, Liu H, Li R, Sun X (2010) Electrochem Commun 12:219–222CrossRefGoogle Scholar
  14. 14.
    Savadogo O, Lee K, Oishi K, Mitsushima S, Kamiya N, Ota KI (2004) Electrochem Commun 6:105–109CrossRefGoogle Scholar
  15. 15.
    Zhang KF, Guo DJ, Liu X, Li J, Li HL, Su ZX (2006) J Power Sources 162:1077–1081CrossRefGoogle Scholar
  16. 16.
    Mark JE (1996) Polym Eng Sci 36:2905–2920CrossRefGoogle Scholar
  17. 17.
    Akamatsu K, Takei S, Mizuhata M, Kajinami A, Deki S, Takeoka S, Fujii M, Hayashi S, Yamamoto K (2000) Thin Solid Films 359:55–60CrossRefGoogle Scholar
  18. 18.
    Zeng R, Rong MZ, Zhang MQ, Liang HC, Zeng HM (2002) Appl Surf Sci 187:239–247CrossRefGoogle Scholar
  19. 19.
    Cole DH, Shull KR, Baldo P, Rehn L (1999) Macromolecules 32:771–779CrossRefGoogle Scholar
  20. 20.
    Osifo PO, Masala AJ (2010) J Power Sources 195:4915–4922CrossRefGoogle Scholar
  21. 21.
    Tong H, Li HL, Zhang XG (2007) Carbon 45:2424–2432CrossRefGoogle Scholar
  22. 22.
    Baughman RH, Zakhidov A, de Heer WA (2002) Science 297:787–792CrossRefGoogle Scholar
  23. 23.
    Wang X, Wang W, Qi Z, Zhao C, Ji H, Zhang Z (2010) J Power Sources 195:6740–6747CrossRefGoogle Scholar
  24. 24.
    Wang X, Wang W, Qi Z, Zhao C, Ji H, Zhang Z (2012) Int J Hydrogen Energy 37:2579–2587CrossRefGoogle Scholar
  25. 25.
    Zhu F, Ma G, Bai Z, Hang R, Tang B, Zhang Z, Wang X (2013) J Power Sources 242:610–620CrossRefGoogle Scholar
  26. 26.
    Cotton FA, Wilkinson G, Gaus PL (1987) Basic inorganic chemistry, 2nd edn. Wiley, Singapore, p 536Google Scholar
  27. 27.
    Micera G, Deiana S, Dessi A, Decock P, Dubois D, Kozlowski H (1985) Inorg Chim Acta 107:45–48CrossRefGoogle Scholar
  28. 28.
    Guibal E, Sweeney NVO, Zikan MC, Vincent T, Tobin JM (2001) Int J Biol Macromol 28:401–408CrossRefGoogle Scholar
  29. 29.
    Morin MC, Lamy C, Léger JM, Vasquez JL, Aldaz A (1990) J Electroanal Chem 283:287–302CrossRefGoogle Scholar
  30. 30.
    Creighton JA, Eadon DG (1991) J Chem Soc Faraday Trans 87:3881–3891CrossRefGoogle Scholar
  31. 31.
    Xu C, Cheng L, Shen P, Liu Y (2007) Electrochem Commun 9:997–1001CrossRefGoogle Scholar
  32. 32.
    Pattabiraman R (1997) Appl Catal A 153:9–20CrossRefGoogle Scholar
  33. 33.
    Singh RN, Singh A, Anindita (2009) Int J Hydrogen Energy 34:2052–2057CrossRefGoogle Scholar
  34. 34.
    Wang H, Xu C, Cheng F, Jiang S (2007) Electrochem Commun 9:1212–1216CrossRefGoogle Scholar
  35. 35.
    Sanmant PV, Fernandes JB, Rangel CM, Figueiredo JL (2005) Catal Today 102–103:173–176CrossRefGoogle Scholar
  36. 36.
    Zhao GY, Xu CL, Guo DJ, Li H, Li HL (2006) J Power Sources 162:492–496CrossRefGoogle Scholar
  37. 37.
    Sun ZP, Zhang XG, Liu RL, Liang YY, Li HL (2008) J Power Sources 185:801–806CrossRefGoogle Scholar
  38. 38.
    Yan Z, Meng H, Shi L, Li Z, Shen PK (2010) Electrochem Commun 12:689–692CrossRefGoogle Scholar
  39. 39.
    Wang X, Hu C, Xiong Y, Liu H, Du G, He X (2011) J Power Sources 196:1904–1908CrossRefGoogle Scholar
  40. 40.
    Yan Z, He G, Zhang G, Meng H, Shen PK (2010) Int J Hydrogen Energy 35:3263–3269CrossRefGoogle Scholar
  41. 41.
    Singh RN, Singh A, Anindita (2009) Carbon 47:271–278CrossRefGoogle Scholar
  42. 42.
    Hu CC, Liu KY (1999) Electrochim Acta 44:2727–2738CrossRefGoogle Scholar
  43. 43.
    Nozad AG, Ghannadi MM, Sedaghat SS, Taghi-Ganji KM, Yari M (2006) Electroanalysis 18:911–917CrossRefGoogle Scholar
  44. 44.
    Honda K, Yoshimura M, Rao TN, Tryk DA, Fujishima A, Yasui K, Sakamoto Y, Nishio K, Masuda H (2001) J Electroanal Chem 514:35–40CrossRefGoogle Scholar
  45. 45.
    O’Connell MJ, Poul P, Ericson LM, Huffman C, Wang Y, Haroz E, Kuper C, Tour J, Ausman KD, Smalley RE (2001) Chem Phys Lett 342:265–271CrossRefGoogle Scholar
  46. 46.
    Yang W, Wang XL, Yang F, Yang C, Yang XR (2008) Adv Mater 9999:1–9Google Scholar
  47. 47.
    Wen ZH, Wang Q, Li JH (2008) Adv Funct Mater 18:959–964CrossRefGoogle Scholar
  48. 48.
    Kua J, Goddard WA (1999) J Am Chem Soc 121:10928–10941CrossRefGoogle Scholar
  49. 49.
    Lee YW, Ko AR, Han SB, Kim HS, Kim DY, Kim SJ, Park KW (2010) Chem Commun 46:9241–9243CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Meissam Noroozifar
    • 1
    Email author
  • M. Khorasani-Motlagh
    • 1
  • M.-S. Ekrami-Kakhki
    • 1
  • R. Khaleghian-Moghadam
    • 1
  1. 1.Department of ChemistryUniversity of Sistan and BaluchestanZahedanIran

Personalised recommendations