A review of high energy density lithium–air battery technology

Abstract

Today’s lithium (Li)-ion batteries have been widely adopted as the power of choice for small electronic devices through to large power systems such as hybrid electric vehicles (HEVs) or electric vehicles (EVs). However, it falls short of meeting the demands of new markets in these areas of EVs or HEVs due to insufficient energy density. Therefore, new battery systems such as Li–air batteries with high theoretical specific energy are being intensively investigated, as this technology could potentially make long-range EVs widely affordable. So far, Li–air battery technology is still in its infancy and will require significant research efforts. This review provides a comprehensive overview of the fundamentals of Li–air batteries, with an emphasis on the recent progress of various elements, such as lithium metal anode, cathode, electrolytes, and catalysts. Firstly, it covers the various types of air cathode used, such as the air cathode based on carbon, the carbon nanotube-based cathode, and the graphene-based cathode. Secondly, different types of catalysts such as metal oxide- and composite-based catalysts, carbon- and graphene-based catalysts, and precious metal alloy-based catalysts are elaborated. The challenges and recent developments on electrolytes and lithium metal anode are then summarized. Finally, a summary of future research directions in the field of lithium air batteries is provided.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    Soloveichik GL (2011) Battery technologies for large-scale stationary energy storage. Annu Rev Chem Biomol Eng 2:503–527. doi:10.1146/annurev-chembioeng-061010-114116

    CAS  Google Scholar 

  2. 2.

    Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4269

    CAS  Google Scholar 

  3. 3.

    Tarascon J-M, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367

    CAS  Google Scholar 

  4. 4.

    Armand M, Tarascon JM (2008) Building better batteries. Nature 451(7179):652–657

    CAS  Google Scholar 

  5. 5.

    Anderman M, Kalhammer FR, MacArthur D (2000) Advanced batteries for electric vehicles: an assessment of performance, cost, and availability. Prepared for State of California Air Resources Board, Sacramento

    Google Scholar 

  6. 6.

    Taniguchi A, Fujioka N, Ikoma M, Ohta A et al (2001) Development of nickel/metal-hydride batteries for EVs and HEVs. J Power Sources 100(1–2):117–124. doi:10.1016/S0378-7753(01)00889-8

    CAS  Google Scholar 

  7. 7.

    Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195(9):2419–2430

    CAS  Google Scholar 

  8. 8.

    Girishkumar G, McCloskey B, Luntz AC, Swanson S, Wilcke W (2010) Lithium-air battery: promise and challenges. J Phys Chem Lett 1(14):2193–2203

    Google Scholar 

  9. 9.

    Zheng J, Liang R, Hendrickson M, Plichta E (2008) Theoretical energy density of Li–air batteries. J Electrochem Soc 155(6):A432–A437

    CAS  Google Scholar 

  10. 10.

    Kraytsberg A, Ein-Eli Y (2011) Review on Li–air batteries—opportunities, limitations and perspective. J Power Sources 196(3):886–893

    CAS  Google Scholar 

  11. 11.

    Lu YC, Gasteiger HA, Parent MC, Chiloyan V, Shao-Horn Y (2010) The influence of catalysts on discharge and charge voltages of rechargeable Li–oxygen batteries. Electrochem Solid-State Lett 13(6):A69–A72

    CAS  Google Scholar 

  12. 12.

    Zhang T, Imanishi N, Shimonishi Y, Hirano A, Takeda Y, Yamamoto O, Sammes N (2010) A novel high energy density rechargeable lithium/air battery. Chem Commun 46(10):1661–1663

    CAS  Google Scholar 

  13. 13.

    Xu W, Xu K, Viswanathan VV, Towne SA, Hardy JS, Xiao J, Nie Z, Hu D, Wang D, Zhang J-G (2011) Reaction mechanisms for the limited reversibility of Li–O2 chemistry in organic carbonate electrolytes. J Power Sources 196(22):9631–9639. doi:10.1016/j.jpowsour.2011.06.099

    CAS  Google Scholar 

  14. 14.

    Hardwick LJ, Bruce PG (2012) The pursuit of rechargeable non-aqueous lithium–oxygen battery cathodes. Curr Opin Solid State Mater Sci 16:178–185

    CAS  Google Scholar 

  15. 15.

    Abraham K, Jiang Z (1996) A polymer electrolyte-based rechargeable lithium/oxygen battery. J Electrochem Soc 143(1):1–5

    CAS  Google Scholar 

  16. 16.

    Read J (2002) Characterization of the lithium/oxygen organic electrolyte battery. J Electrochem Soc 149(9):A1190–A1195

    CAS  Google Scholar 

  17. 17.

    Ogasawara T, Débart A, Holzapfel M, Novák P, Bruce PG (2006) Rechargeable Li2O2 electrode for lithium batteries. J Am Chem Soc 128(4):1390–1393. doi:10.1021/ja056811q

    CAS  Google Scholar 

  18. 18.

    Peng Z, Freunberger SA, Hardwick LJ, Chen Y, Giordani V, Bardé F, Novák P, Graham D, Tarascon JM, Bruce PG (2011) Oxygen reactions in a non-aqueous Li+ electrolyte. Angew Chem Int Ed 123(28):6475–6479

    Google Scholar 

  19. 19.

    Cheng H, Scott K (2011) Selection of oxygen reduction catalysts for rechargeable lithium–air batteries—metal or oxide? Appl Catal B 108:140–151

    Google Scholar 

  20. 20.

    Laoire CO, Mukerjee S, Abraham K, Plichta EJ, Hendrickson MA (2010) Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium− air battery. J Phys Chem C 114(19):9178–9186

    CAS  Google Scholar 

  21. 21.

    Zhong L, Mitchell RR, Liu Y, Gallant BM, Thompson CV, Huang JY, Mao SX, Shao-Horn Y (2013) In situ transmission electron microscopy observations of electrochemical oxidation of Li2O2. Nano Lett 13(5):2209–2214

    Google Scholar 

  22. 22.

    Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev Columb 104(10):4303–4418

    CAS  Google Scholar 

  23. 23.

    Kowalczk I, Read J, Salomon M (2007) Li-air batteries: a classic example of limitations owing to solubilities. Pure Appl Chem 79(5):851–860

    CAS  Google Scholar 

  24. 24.

    He P, Wang Y, Zhou H (2010) A Li-air fuel cell with recycle aqueous electrolyte for improved stability. Electrochem Commun 12(12):1686–1689

    CAS  Google Scholar 

  25. 25.

    Kumar B, Kumar J, Leese R, Fellner JP, Rodrigues SJ, Abraham KM (2010) A solid-state, rechargeable, long cycle life lithium-air battery. J Electrochem Soc 157(1):50–54

    Google Scholar 

  26. 26.

    Kumar B, Kumar J (2010) Cathodes for solid-state lithium–oxygen cells: roles of NASICON glass-ceramics. J Electrochem Soc 157(5):A611–A616

    CAS  Google Scholar 

  27. 27.

    Zhang LL, Wang ZL, Xu D, Zhang XB, Wang LM (2012) The development and challenges of rechargeable non-aqueous lithium–air batteries. Int Smart Nano Mater 1:1–20

    Google Scholar 

  28. 28.

    Yoo E, Zhou H (2011) Li-air rechargeable battery based on metal-free graphene nanosheet catalysts. ACS Nano 5(4):3020–3026

    CAS  Google Scholar 

  29. 29.

    Zhang SS, Foster D, Read J (2010) Discharge characteristic of a non-aqueous electrolyte Li/O2 battery. J Power Sources 195(4):1235–1240

    CAS  Google Scholar 

  30. 30.

    Whittingham MS (2012) Metal-air batteries: a reality check. Electrochem Soc, PRiME, Honolulu, USA

  31. 31.

    Xiao J, Wang D, Xu W, Williford RE, Liu J, Zhang JG (2010) Optimization of air electrode for Li/air batteries. J Electrochem Soc 157(4):A487–A492

    CAS  Google Scholar 

  32. 32.

    Yang Y, Sun Q, Li YS, Li H, Fu ZW (2011) Nanostructured diamond like carbon thin film electrodes for lithium air batteries. J Electrochem Soc 158(10):B1211–B1216

    CAS  Google Scholar 

  33. 33.

    Wang Y, Cheng L, Li F, Xiong H, Xia Y (2007) High electrocatalytic performance of Mn3O4/mesoporous carbon composite for oxygen reduction in alkaline solutions. Chem Mater 19(8):2095–2101

    CAS  Google Scholar 

  34. 34.

    Williford RE, Zhang JG (2009) Air electrode design for sustained high power operation of Li/air batteries. J Power Sources 194(2):1164–1170

    CAS  Google Scholar 

  35. 35.

    Stevens P, Toussaint G, Vinatier P, Puech L (2012) Very high specific surface area capacity lithium-air battery. Electrochem Soc, PRiME, Honolulu, USA

  36. 36.

    Cheng H, Scott K (2010) Carbon-supported manganese oxide nanocatalysts for rechargeable lithium–air batteries. J Power Sources 195(5):1370–1374. doi:10.1016/j.jpowsour.2009.09.030

    CAS  Google Scholar 

  37. 37.

    Yang XH, He P, Xia Y-y (2009) Preparation of mesocellular carbon foam and its application for lithium/oxygen battery. Electrochem Commun 11(6):1127–1130. doi:10.1016/j.elecom.2009.03.029

    CAS  Google Scholar 

  38. 38.

    Mirzaeian M, Hall PJ (2009) Preparation of controlled porosity carbon aerogels for energy storage in rechargeable lithium oxygen batteries. Electrochim Acta 54(28):7444–7451

    CAS  Google Scholar 

  39. 39.

    Ren X, Zhang SS, Tran DT, Read J (2011) Oxygen reduction reaction catalyst on lithium/air battery discharge performance. J Mater Chem 21(27):10118–10125

    CAS  Google Scholar 

  40. 40.

    Arai H, Müller S, Haas O (2000) AC impedance analysis of bifunctional air electrodes for metal-air batteries. J Electrochem Soc 147(10):3584–3591

    CAS  Google Scholar 

  41. 41.

    Ottakam Thotiyl MM, Freunberger SA, Peng Z, Bruce PG (2013) The carbon electrode in nonaqueous Li–O2 cells. J Am Chem Soc 135(1):494–500

    CAS  Google Scholar 

  42. 42.

    Ohkuma H, Uechi I, Matsui M, Takeda Y, Yamamoto O, Imanishi N (2014) Stability of carbon electrodes for aqueous lithium-air secondary batteries. J Power Sources 245:947–952

    CAS  Google Scholar 

  43. 43.

    Song MK, Park S, Alamgir FM, Cho J, Liu M (2011) Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives. Mater Sci Eng R 72(11):203–252

    Google Scholar 

  44. 44.

    Mitchell RR, Gallant BM, Thompson CV, Shao-Horn Y (2011) All-carbon-nanofiber electrodes for high-energy rechargeable Li–O2 batteries. Energy Environ Sci 4(8):2952–2958

    CAS  Google Scholar 

  45. 45.

    Jiang K, Wang J, Li Q, Liu L, Liu C, Fan S (2011) Superaligned carbon nanotube arrays, films, and yarns: a road to applications. Adv Mater 23(9):1154–1161

    CAS  Google Scholar 

  46. 46.

    Gong KP, Du F, Xia ZH, Durstock M, Dai LM (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323(5915):760–764

    CAS  Google Scholar 

  47. 47.

    Tang Y, Allen BL, Kauffman DR, Star A (2009) Electrocatalytic activity of nitrogen-doped carbon nanotube cups. J Am Chem Soc 131(37):13200–13201

    CAS  Google Scholar 

  48. 48.

    Li H, Liu H, Jong Z, Qu W, Geng D, Sun X, Wang H (2011) Nitrogen-doped carbon nanotubes with high activity for oxygen reduction in alkaline media. Int J Hydrogen Energy 36(3):2258–2265

    CAS  Google Scholar 

  49. 49.

    Shao Y, Wang X, Engelhard M, Wang C, Dai S, Liu J, Yang Z, Lin Y (2010) Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow batteries. J Power Sources 195(13):4375–4379. doi:10.1016/j.jpowsour.2010.01.015

    CAS  Google Scholar 

  50. 50.

    Kichambare P, Kumar J, Rodrigues S, Kumar B (2011) Electrochemical performance of highly mesoporous nitrogen doped carbon cathode in lithium–oxygen batteries. J Power Sources 196(6):3310–3316

    CAS  Google Scholar 

  51. 51.

    Kichambare P, Rodrigues S, Kumar J (2012) Mesoporous nitrogen-doped carbon-glass ceramic cathodes for solid-state lithium–oxygen batteries. ACS Appl Mater Interfaces 4:49–52

    CAS  Google Scholar 

  52. 52.

    Li Y, Wang J, Li X, Liu J, Geng D, Yang J, Li R, Sun X (2011) Nitrogen-doped carbon nanotubes as cathode for lithium–air batteries. Electrochem Commun 13(7):668–672

    CAS  Google Scholar 

  53. 53.

    Xiao J, Mei D, Li X, Xu W, Wang D, Graff GL, Bennett WD, Nie Z, Saraf LV, Aksay IA (2011) Hierarchically porous graphene as a lithium–air battery electrode. Nano Lett 11(11):5071–5078

    CAS  Google Scholar 

  54. 54.

    Li Y, Wang J, Li X, Geng D, Li R, Sun X (2011) Superior energy capacity of graphene nanosheets for a nonaqueous lithium-oxygen battery. Chem Commun 47(33):9438–9440

    CAS  Google Scholar 

  55. 55.

    Sun B, Wang B, Su D, Xiao L, Ahn H, Wang G (2012) Graphene nanosheets as cathode catalysts for lithium-air batteries with an enhanced electrochemical performance. Carbon 50(2):727–733

    CAS  Google Scholar 

  56. 56.

    Li Y, Wang J, Li X, Geng D, Banis MN, Li R, Sun X (2012) Nitrogen-doped graphene nanosheets as cathode materials with excellent electrocatalytic activity for high capacity lithium-oxygen batteries. Electrochem Commun 18:12–15. doi:10.1016/j.elecom.2012.01.023

    CAS  Google Scholar 

  57. 57.

    Li Y, Wang J, Li X, Geng D, Banis MN, Tang Y, Wang D, Li R, Sham TK, Sun X (2012) Discharge product morphology and increased charge performance of lithium-oxygen batteries with graphene nanosheet electrodes: the effect of sulphur doping. J Mater Chem 22:20170–20174

    CAS  Google Scholar 

  58. 58.

    Adams BD, Oh SH, Black Robert, Baran-Harper A, Nazar LF (2012) Investigation of ORR and OER in non-aqueous (and aqueous) Li-O2 cells using metal oxide catalysts. Electrochem Soc, PRiME, Honolulu, USA

  59. 59.

    Dobley A, DiCarlo J, Abraham K et al (2004) Non-aqueous lithium-air batteries with an advanced cathode structure. In: Yardley Technical Products, Inc./Lithion, Inc. Pawcatuck, CT 41st Power Sources Conference Proceedings, Philadelphia, PA

  60. 60.

    Zhang G, Zheng J, Liang R, Zhang C, Wang B, Au M, Hendrickson M, Plichta E (2011) α-MnO2/carbon nanotube/carbon nanofiber composite catalytic air electrodes for rechargeable lithium-air batteries. J Electrochem Soc 158(7):A822–A827

    CAS  Google Scholar 

  61. 61.

    Débart A, Bao J, Armstrong G, Bruce PG (2007) An O2 cathode for rechargeable lithium batteries: the effect of a catalyst. J Power Sources 174(2):1177–1182

    Google Scholar 

  62. 62.

    Débart A, Paterson AJ, Bao J, Bruce PG (2008) α-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries. Angew Chem Int Ed 120(24):4597–4600

    Google Scholar 

  63. 63.

    Orellana W (2012) Metal-phthalocyanine functionalized carbon nanotubes as catalyst for the oxygen reduction reaction: a theoretical study. Chem Phys Lett 541:81–84

    CAS  Google Scholar 

  64. 64.

    Kuboki T, Okuyama T, Ohsaki T, Takami N (2005) Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte. J Power Sources 146(1–2):766–769. doi:10.1016/j.jpowsour.2005.03.082

    CAS  Google Scholar 

  65. 65.

    Zhang SS, Ren X, Read J (2011) Heat-treated metal phthalocyanine complex as an oxygen reduction catalyst for non-aqueous electrolyte Li/air batteries. Electrochim Acta 56(12):4544–4548. doi:10.1016/j.electacta.2011.02.072

    CAS  Google Scholar 

  66. 66.

    Kim H, Lee K, Woo SI, Jung Y (2011) On the mechanism of enhanced oxygen reduction reaction in nitrogen-doped graphene nanoribbons. Phys Chem Chem Phys 13(39):17505–17510

    CAS  Google Scholar 

  67. 67.

    Lee DU, Yu A, Park HW, Nickel CZ (2012) Cobalt oxide nanostructures on graphene as an active bifunctional electrocatalyst. Electrochem Soc, PRiME, Honolulu, USA

  68. 68.

    Wang L, Zhao X, Lu Y, Xu M, Zhang D, Ruoff RS, Stevenson KJ, Goodenough JB (2011) CoMn2O4 spinel nanoparticles grown on graphene as bifunctional catalyst for lithium-air batteries. J Electrochem Soc 158(12):A1379–A1382

    CAS  Google Scholar 

  69. 69.

    Wu G, Mack NH, Gao W, Ma S, Zhong R, Han J, Baldwin JK, Zelenay P (2012) Nitrogen-doped graphene-rich catalysts derived from heteroatom polymers for oxygen reduction in nonaqueous lithium–O2 battery cathodes. ACS Nano 6(11):9764–9776

    CAS  Google Scholar 

  70. 70.

    Lu YC, Xu Z, Gasteiger HA, Chen S, Hamad-Schifferli K, Shao-Horn Y (2010) Platinum− gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium− air batteries. J Am Chem Soc 132(35):12170–12171

    CAS  Google Scholar 

  71. 71.

    Bian X, Guo K, Liao L, Xiao J, Kong J, Ji C, Liu B (2012) Nanocomposites of palladium nanoparticle-loaded mesoporous carbon nanospheres for the electrochemical determination of hydrogen peroxide. Talanta 99:256–261

    CAS  Google Scholar 

  72. 72.

    Bidault F, Kucernak A (2011) Cathode development for alkaline fuel cells based on a porous silver membrane. J Power Sources 196(11):4950–4956

    CAS  Google Scholar 

  73. 73.

    Erikson H, Sarapuu A, Alexeyeva N, Tammeveski K, Solla-Gullón J, Feliu J (2012) Electrochemical reduction of oxygen on palladium nanocubes in acid and alkaline solutions. Electrochim Acta 59:329–335

    CAS  Google Scholar 

  74. 74.

    Spendelow JS, Wieckowski A (2007) Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media. Phys Chem Chem Phys 9(21):2654–2675

    CAS  Google Scholar 

  75. 75.

    Tang W, Zhang L, Henkelman G (2011) Catalytic activity of Pd/Cu random alloy nanoparticles for oxygen reduction. J Phys Chem Lett 2(11):1328–1331

    CAS  Google Scholar 

  76. 76.

    Thapa AK, Ishihara T (2011) Mesoporous α-MnO2/Pd catalyst air electrode for rechargeable lithium–air battery. J Power Sources 196(16):7016–7020. doi:10.1016/j.jpowsour.2010.09.112

    CAS  Google Scholar 

  77. 77.

    Lu Y-C, Gasteiger HA, Shao-Horn Y (2011) Catalytic activity trends of oxygen reduction reaction for nonaqueous Li-air batteries. J Am Chem Soc 133(47):19048–19051

    CAS  Google Scholar 

  78. 78.

    Zhang T, Imanishi N, Shimonishi Y, Hirano A, Xie J, Takeda Y, Yamamoto O, Sammes N (2010) Stability of a water-stable lithium metal anode for a lithium–air battery with acetic acid–water solutions. J Electrochem Soc 157(2):A214–A218

    CAS  Google Scholar 

  79. 79.

    Wang Y, He P, Zhou H (2011) A lithium–air capacitor–battery based on a hybrid electrolyte. Energy Environ Sci 4(12):4994–4999

    CAS  Google Scholar 

  80. 80.

    Shao Y, Ding F, Xiao J, Zhang J, Xu W, Park S, Zhang JG, Wang Y, Liu J (2012) Making Li/air batteries rechargeable: material challenges. Adv Funct Mater 23(8):987–1004

    Google Scholar 

  81. 81.

    Read J, Mutolo K, Ervin M, Behl W, Wolfenstine J, Driedger A, Foster D (2003) Oxygen transport properties of organic electrolytes and performance of lithium/oxygen battery. J Electrochem Soc 150(10):A1351–A1356

    CAS  Google Scholar 

  82. 82.

    Wu B, Chen X, Zhang C, Mu D, Wu F (2012) Lithium–air and lithium–copper batteries based on a polymer stabilized interface between two immiscible electrolytic solutions (ITIES). New J Chem 36(10):2140–2145

    CAS  Google Scholar 

  83. 83.

    Freunberger SA, Chen Y, Peng Z, Griffin JM, Hardwick LJ, Bardé F, Novák P, Bruce PG (2011) Reactions in the rechargeable lithium–O2 battery with alkyl carbonate electrolytes. J Am Chem Soc 133(20):8040–8047. doi:10.1021/ja2021747

    CAS  Google Scholar 

  84. 84.

    CormacÓ Laoire SM, Plichta EJ, Hendrickson MA, Abraham KM (2011) Rechargeable lithium/TEGDME- LiPF6/O2 battery batteries and energy storage. J Electrochem Soc 158(3):A302–A308

    Google Scholar 

  85. 85.

    Freunberger SA, Chen Y, Drewett NE, Hardwick LJ, Bardé F, Bruce PG (2011) The lithium–oxygen battery with ether-based electrolytes. Angew Chem Int Ed 50(37):8609–8613. doi:10.1002/anie.201102357

    CAS  Google Scholar 

  86. 86.

    Xu W, Xiao J, Wang D, Zhang J, Zhang JG (2010) Effects of nonaqueous electrolytes on the performance of lithium/air batteries. J Electrochem Soc 157(2):A219–A224

    CAS  Google Scholar 

  87. 87.

    Padbury R, Zhang X (2011) Lithium–oxygen batteries—limiting factors that affect performance. J Power Sources 196(10):4436–4444

    CAS  Google Scholar 

  88. 88.

    Yu X, Bates J, Jellison G, Hart F (1997) A stable thin-film lithium electrolyte: lithium phosphorus oxynitride. J Electrochem Soc 144(2):524–532

    CAS  Google Scholar 

  89. 89.

    Christensen J, Albertus P, Sanchez-Carrera RS, Lohmann T, Kozinsky B, Liedtke R, Ahmed J, Kojic A (2011) A critical review of Li/air batteries. J Electrochem Soc 159(2):R1–R30

    Google Scholar 

  90. 90.

    Christopher P, Rhodes YF, Mullings M, Uselton K, Cross J Solid-state lithium batteries using thio-LISICON solid-state electrolytes. Lynntech, Inc. 7610 Eastmark Dr., College Station, TX 77840. https://web.ornl.gov/ccsd_registrations/battery/abstracts/Solidstate%20batteries_abstract_Rhodes_2010-08-30.pdf. Accessed 25 April 2013

  91. 91.

    Thangadurai V (2012) Recent developments in solid Li-ion electrolytes. PRiME, Honolulu

    Google Scholar 

  92. 92.

    Zhang D, Li R, Huang T, Yu A (2010) Novel composite polymer electrolyte for lithium air batteries. J Power Sources 195(4):1202–1206

    CAS  Google Scholar 

  93. 93.

    Nanjundiah C, McDevitt S, Koch V (1997) Differential capacitance measurements in solvent-free ionic liquids at Hg and C interfaces. J Electrochem Soc 144(10):3392–3397

    CAS  Google Scholar 

  94. 94.

    Manthiram A, Li L, Fu Y (2012) Dual-electrolyte lithium-air batteries with buffer catholytes. Electrochem Soc, PRiME, Honolulu, USA

  95. 95.

    Peng Z, Freunberger SA, Chen Y, Bruce PG (2012) A reversible and higher-rate Li-O2 battery. Science 337(6094):563–566

    CAS  Google Scholar 

  96. 96.

    Whittingham MS (1976) Electrical energy storage and intercalation chemistry. Science 192(4244):1126–1127

    CAS  Google Scholar 

  97. 97.

    Aurbach D, Zinigrad E, Teller H, Dan P (2000) Factors which limit the cycle life of rechargeable lithium (metal) batteries. J Electrochem Soc 147(4):1274–1279

    CAS  Google Scholar 

  98. 98.

    Park MS, Yoon WY (2003) Characteristics of a Li/MnO2 battery using a lithium powder anode at high-rate discharge. J Power Sources 114(2):237–243. doi:10.1016/S0378-7753(02)00581-5

    CAS  Google Scholar 

  99. 99.

    Kong S-K, Kim B-K, Yoon W-Y (2012) Electrochemical behavior of Li-powder anode in high Li capacity used. J Electrochem Soc 159(9):A1551–A1553

    CAS  Google Scholar 

  100. 100.

    Aurbach D, Talyosef Y, Markovsky B, Markevich E, Zinigrad E, Asraf L, Gnanaraj JS, Kim H-J (2004) Design of electrolyte solutions for Li and Li-ion batteries: a review. Electrochim Acta 50(2–3):247–254. doi:10.1016/j.electacta.2004.01.090

    CAS  Google Scholar 

  101. 101.

    Aurbach D, Zinigrad E, Cohen Y, Teller H (2002) A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ion 148(3–4):405–416. doi:10.1016/S0167-2738(02)00080-2

    CAS  Google Scholar 

  102. 102.

    Novák P, Müller K, Santhanam K, Haas O (1997) Electrochemically active polymers for rechargeable batteries. Chem Rev 97(1):207–282

    Google Scholar 

  103. 103.

    Pokhodenko VD, Koshechko VG, Krylov VA (1993) New electrolytes and polymer cathode materials for lithium batteries. J Power Sources 45(1):1–5. doi:10.1016/0378-7753(93)80001-6

    CAS  Google Scholar 

  104. 104.

    Takehara Z-i, Ogumi Z, Uchimoto Y, Yasuda K, Yoshida H (1993) Modification of lithium/electrolyte interface by plasma polymerization of 1,1-difluoroethene. J Power Sources 44(1–3):377–383. doi:10.1016/0378-7753(93)80177-Q

    CAS  Google Scholar 

  105. 105.

    Lee YM, Choi NS, Park JH, Park JK (2003) Electrochemical performance of lithium/sulfur batteries with protected Li anodes. J Power Sources 119:964–972

    Google Scholar 

  106. 106.

    Matsuda Y, Ishikawa M, Yoshitake S, Morita M (1995) Characterization of the lithium-organic electrolyte interface containing inorganic and organic additives by in situ techniques. J Power Sources 54(2):301–305

    CAS  Google Scholar 

  107. 107.

    Choi N-S, Lee YM, Cho KY, Ko D-H, Park J-K (2004) Protective layer with oligo (ethylene glycol) borate anion receptor for lithium metal electrode stabilization. Electrochem Commun 6(12):1238–1242. doi:10.1016/j.elecom.2004.09.023

    CAS  Google Scholar 

  108. 108.

    Choi N-S, Lee YM, Seol W, Lee JA, Park J-K (2004) Protective coating of lithium metal electrode for interfacial enhancement with gel polymer electrolyte. Solid State Ion 172(1):19–24

    CAS  Google Scholar 

  109. 109.

    Ishikawa M, Kanemoto M, Morita M (1999) Control of lithium metal anode cycleability by electrolyte temperature. J Power Sources 81–82:217–220. doi:10.1016/S0378-7753(98)00213-4

    Google Scholar 

  110. 110.

    Ishikawa M, Takaki Y, Morita M, Matsuda Y (1997) Improvement of charge-discharge cycling efficiency of li by low-temperature precycling of Li. J Electrochem Soc 144(4):L90–L92

    CAS  Google Scholar 

  111. 111.

    Wilkinson D, Blom H, Brandt K, Wainwright D (1991) Effects of physical constraints on Li cyclability. J Power Sources 36(4):517–527

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support for this research through the Australia–India Strategic Research Fund (AISRF, ST 060048).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Cuie Wen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rahman, M.A., Wang, X. & Wen, C. A review of high energy density lithium–air battery technology. J Appl Electrochem 44, 5–22 (2014). https://doi.org/10.1007/s10800-013-0620-8

Download citation

Keywords

  • Energy density
  • Lithium
  • Anode
  • Cathode
  • Catalyst
  • Electrolyte