Skip to main content
Log in

Carbon-supported Pt(Cu) electrocatalysts for methanol oxidation prepared by Cu electroless deposition and its galvanic replacement by Pt

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Bimetallic Pt–Cu carbon-supported catalysts (Pt(Cu)/C) were prepared by electroless deposition of Cu on a high surface area carbon powder support, followed by its partial exchange for Pt; the latter was achieved by a galvanic replacement process involving treatment of the Cu/C precursor with a chloroplatinate solution. X-ray diffraction characterization of the Pt(Cu)/C material showed the formation of Pt-rich Pt–Cu alloys. X-ray photoelectron spectroscopy revealed that the outer layers are mainly composed of Pt and residual Cu oxides, while metallic Cu is recessed into the core of the particles. Repetitive cyclic voltammetry in deaerated acid solutions in the potential range between hydrogen and oxygen evolution resulted in steady-state characteristics similar to those of pure Pt, indicating the removal of residual Cu compounds from the surface (due to electrochemical treatment) and the formation of a compact Pt outer shell. The electrocatalytic activity of the thus prepared Pt(Cu)/C material toward methanol oxidation was compared to that of a commercial Pt/C catalyst as well as of similar Pt(Cu)/C catalysts formed by simple Cu chemical reduction. The Pt(Cu)/C catalyst prepared using Cu electroless plating showed more pronounced intrinsic catalytic activity toward methanol oxidation than its counterparts and a similar mass activity when compared to the commercial catalyst. The observed trends were interpreted by interplay between mere surface area effects and modification of Pt electrocatalytic performance in the presence of Cu, both with respect to methanol oxidation and poisonous CO removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Arico AS, Srinivasan S, Antonucci V (2001) DMFCs: from fundamental aspects to technology development. Fuel Cells 1:133–161

    Article  CAS  Google Scholar 

  2. McNicol BD, Rand DAJ, Williams KR (1999) Direct methanol–air fuel cells for road transportation. J Power Sources 83:15–31

    Article  CAS  Google Scholar 

  3. Lamy C, Lima A, Le Rhun V, Delime F, Coutanceau C, Léger JM (2002) Recent advances in the development of direct alcohol fuel cells (DAFC). J Power Sources 105:283–296

    Article  CAS  Google Scholar 

  4. Hamnett A (2003) Handbook of Fuel Cells: Fundamentals, Technology and Applications. In: Vielstich W, Lamm A, Gasteiger HA (eds) Direct methanol fuel cells (DMFC). Wiley, Chichester, pp 305–322

    Google Scholar 

  5. Jarvi TD, Sriramulu S, Stuve EM (1997) Potential dependence of the yield of carbon dioxide from electrocatalytic oxidation of methanol on platinum (100). J Phys Chem B 101:3649–3652

    Article  CAS  Google Scholar 

  6. Hogarth MP, Ralph TR (2002) Catalysis for low temperature fuel cells. Platinum Metals Rev 46:146–164

    CAS  Google Scholar 

  7. Liu Z, Lee JY, Chen W, Han M, Gan LM (2004) Physical and electrochemical characterizations of microwave-assisted polyol preparation of carbon-supported PtRu nanoparticles. Langmuir 20:181–187

    Article  CAS  Google Scholar 

  8. Li L, Xing Y (2007) Pt–Ru nanoparticles supported on carbon nanotubes as methanol fuel cell catalysts. J Phys Chem C 111:2803–2808

    Article  CAS  Google Scholar 

  9. Nagle LC, Rohan JF (2008) Aligned carbon nanotube–Pt composite fuel cell catalyst by template electrodeposition. J Power Sources 185:411–418

    Article  CAS  Google Scholar 

  10. Watanabe M, Motoo S (1975) Electrocatalysis by ad-atoms: Part III. Enhancement of the oxidation of carbon monoxide on platinum by ruthenium ad-atoms. J Electroanal Chem 60:275–283

    Article  CAS  Google Scholar 

  11. Ishikawa Y, Liao M-S, Cabrera CR (2000) Oxidation of methanol on platinum, ruthenium and mixed Pt–M metals (M = Ru, Sn): a theoretical study. Surf Sci 463:66–80

    Article  CAS  Google Scholar 

  12. Hammer B, Nørskov JK (2000) Theoretical surface science and catalysis—calculations and concepts. Adv Catal 45:71–129

    Article  CAS  Google Scholar 

  13. Kitchin JR, Nørskov JK, Barteau MA, Chen JG (2004) Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals. J Chem Phys 120:10240–10246

    Article  CAS  Google Scholar 

  14. Antolini E, Salgado JRC, Gonzalez ER (2006) The methanol oxidation reaction on platinum alloys with the first row transition metals: the case of Pt–Co and –Ni alloy electrocatalysts for DMFCs: A short review. Appl Catal B: Env 63:137–149

    Article  CAS  Google Scholar 

  15. Antolini E (2007) Platinum-based ternary catalysts for low temperature fuel cells: Part I. Preparation methods and structural characteristics. Appl Catal B: Env 74:324-336; Part II. Electrochemical properties. Appl Catal B: Env 74:337–350

    Article  CAS  Google Scholar 

  16. Antolini E, Lopes T, Gonzalez ER (2008) An overview of platinum-based catalysts as methanol-resistant oxygen reduction materials for direct methanol fuel cells. J Alloys Compd 461:253–262

    Article  CAS  Google Scholar 

  17. Jayasayee K, Rob Van Veen JA, Manivasagam TG, Celebi S, Hensen EJM, Bruijn FA (2012) Oxygen reduction reaction (ORR) activity and durability of carbon supported PtM (Co, Ni, Cu) alloys: influence of particle size and non-noble metals. Appl Catal B: Env 111–112:515–526

    Article  Google Scholar 

  18. Bonnemann H, Brijoux W, Brinkmann R, Dinjus E, Jouben T, Korall B (1991) Formation of colloidal transition metals in organic phases and their application in catalysis. Angew Chem Int Ed Engl 30:1312–1314

    Article  Google Scholar 

  19. Wang Y, Ren J, Deng K, Gui L, Tang Y (2000) Preparation of tractable platinum, rhodium, and ruthenium nanoclusters with small particle size in organic media. Chem Mater 12:1622–1627

    Article  Google Scholar 

  20. Adzic R, Zhang J, Sasaki K, Vukmirovic M, Shao M, Wang J, Nilekar A, Mavrikakis M, Valerio J, Uribe F (2007) Platinum monolayer fuel cell electrocatalysts. Top Catal 46:249–262

    Article  CAS  Google Scholar 

  21. Brankovic SR, Wang JX, Adzic RR (2001) Metal monolayer deposition by replacement of metal adlayers on electrode surfaces. Surf Sci 474:L173

    Article  CAS  Google Scholar 

  22. Van Brussel M, Kokkidinis G, Vandendael I, Buess-Herman C (2002) High performance gold-supported platinum electrocatalyst for oxygen reduction. Electrochem Commun 4:808–813

    Article  Google Scholar 

  23. Van Brussel M, Kokkidinis G, Hubin A, Buess-Herman C (2003) Oxygen reduction at platinum modified gold electrodes. Electrochim Acta 48:3909–3919

    Article  Google Scholar 

  24. Papadimitriou S, Tegou A, Pavlidou E, Kokkinidis G, Sotiropoulos S (2008) Preparation and characterisation of platinum- and gold-coated copper, iron, cobalt and nickel deposits on glassy carbon substrates. Electrochim Acta 53:6559–6567

    Article  CAS  Google Scholar 

  25. Tegou A, Papadimitriou S, Kokkinidis G, Sotiropoulos S (2010) A rotating disc electrode study of oxygen reduction at platinised nickel and cobalt coatings. J Solid State Electrochem 14:175–184

    Article  CAS  Google Scholar 

  26. Papadimitriou S, Armyanov S, Valova E, Hubin A, Steenhaut O, Pavlidou E, Kokkinidis G, Sotiropoulos S (2010) Methanol oxidation at Pt–Cu, Pt–Ni, and Pt–Co electrode coatings prepared by a galvanic replacement process. J Phys Chem C 114:5217–5223

    Article  CAS  Google Scholar 

  27. Tegou A, Papadimitriou S, Mintsouli I, Armyanov S, Valova E, Kokkinidis G, Sotiropoulos S (2011) Rotating disc electrode studies of borohydride oxidation at Pt and bimetallic Pt–Ni and Pt–Co electrodes. Catal Today 170:126–133

    Article  CAS  Google Scholar 

  28. Ammam M, Easton EB (2013) PtCu/C and Pt(Cu)/C catalysts: synthesis, characterization and catalytic activity towards ethanol electrooxidation. J Power Sources 222:79–87

    Article  CAS  Google Scholar 

  29. Podlovchenko BI, Gladysheva TD, Filatov AY, Yashina LV (2010) The use of galvanic displacement in synthesizing Pt(Cu) catalysts with the core-shell structure. Russ J Electrochem 46:1189–1197

    Article  CAS  Google Scholar 

  30. Podlovchenko BI, Krivchenko VA, Maksimov YM, Gladysheva TD, Yashina LV, Evlashin SA, Pilevsky AA (2012) Specific features of the formation of Pt(Cu) catalysts by galvanic displacement with carbon nanowalls used as support. Electrochim Acta 76:137–144

    Article  CAS  Google Scholar 

  31. Podlovchenko BI, Gladysheva TD, Krivchenko VA, Maksimov YM, Filatov AY, Yashina LV (2012) Effect of copper deposit morphology on the characteristics of a Pt(Cu)/C-catalyst obtained by galvanic displacement. Mendeleev Commun 22:203–205

    Article  CAS  Google Scholar 

  32. Mintsouli I, Georgieva J, Armyanov S, Valova E, Avdeev G, Hubin A, Steenhaut O, Dille J, Tsiplakides D, Balemenou S, Sotiropoulos S (2013) Pt–Cu electrocatalysts for methanol oxidation prepared by partial galvanic replacement of Cu/carbon powder precursors. Appl Catal B: Env 136–137:160–167

    Article  Google Scholar 

  33. Wang X, Wang H, Wang R, Wang Q, Lei Z (2012) Carbon-supported platinum-decorated nickel nanoparticles for enhanced methanol oxidation in acid media. J Solid State Electrochem 16:1049–1054

    Article  CAS  Google Scholar 

  34. Hu Y, Shao Q, Wu P, Zhang H, Cai C (2012) Synthesis of hollow mesoporous Pt–Ni nanosphere for highly active electrocatalysis toward the methanol oxidation reaction. Electrochem Commun 18:96–99

    Article  CAS  Google Scholar 

  35. Mintsouli I, Georgieva J, Valova E, Armyanov S, Kakaroglou A, Hubin A, Steenhaut O, Dill J, Papaderakis A, Kokkinidis G, Sotiropoulos S (2013) Pt–Ni carbon-supported catalysts for methanol oxidation prepared by Ni electroless deposition and its galvanic replacement by Pt. J Solid State Electrochem 17:435–443

    Article  CAS  Google Scholar 

  36. Ando Y, Sasaki K, Adzic RR (2009) Electrocatalysts for methanol oxidation with ultra low content of Pt and Ru. Electrochem Commun 11:1135–1138

    Article  CAS  Google Scholar 

  37. Georgieva M, Petrova M, Dobrev D, Velkova E, Stoychev D (2011) Chemical deposition of composite copper—diamond coatings on non-metallic substrate. Mater Plastice 48:269–272

    CAS  Google Scholar 

  38. Lovrecek B, Mekjavic I, Metikos-Hukovic M (1985) Standard Potentials in Aqueous Solution. In: Bard AJ, Parsons R, Jordan J (eds) Bismuth, Marcel Dekker, Inc, NY and Basel

  39. Cullity ED, Stock SR (2001) Elements of X-ray diffraction. 3rd edn, Prentice-Hall Inc, pp 167–171

  40. Xu H-C, Seshadri G, Kelber JA (2000) Effect of sulfur on the oxidation of copper in aqueous solution. J Electrochem Soc 147:558–561

    Article  CAS  Google Scholar 

  41. Teng X, Du W, Wang Q (2011) Nanowires—fundamental research. In: Hashim A (ed) Synthesis of Pt–containing metals alloy and hybrid nanowires and investigation of electronic structure using synchrotron-based X-ray absorption techniques, InTech, open access at http://www.intechopen.com/books/nanowires-fundamental-research

  42. Greeley J, Mavrikakis M (2006) Near-surface alloys for hydrogen fuel cell applications. Catal Today 111:52–58

    Article  CAS  Google Scholar 

  43. Bagotzky VS, Vassilyev YB (1967) Mechanism of electro-oxidation of methanol on the platinum electrode. Electrochim Acta 12:1323–1343

    Article  Google Scholar 

  44. Choi SM, Kim HJ, Jung JY, Yoon EY, Kim WB (2008) Pt nanowires prepared via a polymer template method: its promise toward high Pt-loaded electrocatalysts for methanol oxidation. Electrochim Acta 53:5804–5811

    Article  CAS  Google Scholar 

  45. Pozio A, De Francesco M, Gemmi A, Cardellini F, Giorgi L (2002) Comparison of high surface Pt/C catalysts by cyclic voltammetry. J Power Sources 105:13–19

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research has been co-financed by the European Union (European Social Fund—ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF)—Research Funding Program: Heracleitus II. Investing in knowledge society through the European Social Fund. Part of the investigations was made within the framework of bilateral projects for collaboration between Bulgarian Academy of Sciences and Fonds Wetenschappelijk Onderzoek (Belgium) and Bulgarian Academy of Sciences and Wallonie-Bruxelles International (Belgium).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Georgieva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Georgieva, J., Valova, E., Mintsouli, I. et al. Carbon-supported Pt(Cu) electrocatalysts for methanol oxidation prepared by Cu electroless deposition and its galvanic replacement by Pt. J Appl Electrochem 44, 215–224 (2014). https://doi.org/10.1007/s10800-013-0618-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-013-0618-2

Keywords

Navigation